
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Bi-direction Direct RGB-D Visual Odometry

Jiyuan Cai, Lingkun Luo & Shiqiang Hu

To cite this article: Jiyuan Cai, Lingkun Luo & Shiqiang Hu (2020) Bi-direction Direct
RGB-D Visual Odometry, Applied Artificial Intelligence, 34:14, 1137-1158, DOI:
10.1080/08839514.2020.1824093

To link to this article:  https://doi.org/10.1080/08839514.2020.1824093

Published online: 11 Oct 2020.

Submit your article to this journal 

Article views: 542

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2020.1824093
https://doi.org/10.1080/08839514.2020.1824093
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1824093
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1824093
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1824093&domain=pdf&date_stamp=2020-10-11
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1824093&domain=pdf&date_stamp=2020-10-11
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1824093#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1824093#tabModule


Bi-direction Direct RGB-D Visual Odometry
Jiyuan Cai, Lingkun Luo, and  Shiqiang Hu

School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China

ABSTRACT
Direct visual odometry (DVO) is an important vision task which 
aims to obtain the camera motion via minimizing the photo
metric error across the different correlated images. However, 
the previous research on DVO rarely considered the motion bias 
and only calculated using single direction, therefore potentially 
ignoring useful information compared with leveraging diverse 
directions. We assume that jointly considering forward and 
backward calculation can improve the accuracy of pose estima
tion. To verify our assumption and solid this contribution, in this 
paper, we test various combination of direct dense methods, 
including different error metrics, e.g., (intensity, gradient mag
nitude), alignment strategies (Forward-Compositional, Inverse- 
Compositional), and calculation directions (forward, backward, 
and bi-direction). We further study the issue of motion bias in 
RGB-D visual odometry and propose four strategy options to 
improve pose estimation accuracy, e.g., joint bi-direction estima
tion; two stage bi-direction estimation; transform average with 
weights; and transform fusion with covariance. We demonstrate 
the effectiveness and efficiency of our proposed algorithms 
across a range of popular datasets, e.g., TUM RGB-D and ICL- 
NUIM, in which we achieve an impressive performance through 
comparing with state of the art methods and provide benefits 
for existing RGB-D visual odometry and visual SLAM systems.

ARTICLE HISTORY 
Compiled 18 June 2020  

Introduction

Visual simultaneous localization and mapping (vSLAM) and visual odometry 
(VO) are the important tasks in computer vision and robotics community. VO 
can be considered as a subproblem of vSLAM and focuses on estimating the 
relative motion between consecutive image frames. In addition to monocular 
(Lin et al. 2018) and stereo cameras (Cvišic et al. 2017; Ling and Shen 2019), in 
recent years, visual odometry with RGB-D sensors has gained superior attentions 
in various research aspects (Zhou, Li, and Kneip 2018) and successfully applied to 
unmanned aerial vehicle (Iacono and Sgorbissa 2018), autonomous ground vehicle 
(Aguilar et al. 2017a), augmented reality, and virtual reality (Aguilar et al., 2017b).

RGB-D camera provides a simple yet cost-effective way to obtain RGB and 
additional depth information of scene (Dos Reis et al. 2019). Similar as 
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traditional visual odometry, RGB-D visual odometry can also be divided into 
feature-based methods and direct methods. Feature-based methods require 
feature extraction and data association. However, these methods achieve poor 
performance within textureless conditions. In contrast, direct methods opti
mize the rigid-body transformation between two frames by minimizing the 
photometric error. They have been shown to be more robust against image 
blur. Recent research also shows that direct methods present higher accuracy 
than feature-based methods both in odometry (Engel, Koltun, and Cremers 
2017) and mapping (Schops, Sattler, and Pollefeys 2019; Zubizarreta, 
Aguinaga, and Montiel 2020). By introducing camera internal parameters 
and exposure parameters into the photometric model as optimization vari
ables, the front-end odometry results are improved. The back-end mapping 
part based on the photometric bundle adjustment can also benefit from the 
informative reobservations by the proposed persistent map (Zubizarreta, 
Aguinaga, and Montiel 2020).

The substantial drift caused by inaccurate frame-to-frame ego-motion is the 
main challenge for long-term direct visual odometry. As a common knowl
edge, the basic idea of direct image alignment adopts the formulation of the 
well known Lucas-Kanade approach (Baker and Matthews 2004). Proesmansl 
et al. found that the forward and backward scheme of the optical flow are not 
equivalent due to the large inconsistencies near edges and occluding regions. 
In (Proesmans et al. 1994), they proposed a dual optical flow scheme to 
measure the inconsistency. Forward-backward consistency check can also be 
used to eliminate false matches in feature tracking element of the stereo visual 
odometry (Deigmoeller and Eggert 2016) and monocular vision odometry 
(Bergmann, Wang, and Cremers 2017). Additionally, this idea has also gained 
much popularities in the recent deep learning-based optical flow estimation 
problem (Pillai and Leonard 2017). The motion estimation was refined by 
filtering some occluded and overshifted pixels (Hu, Song, and Li 2016; Revaud 
et al. 2015; Yin and Shi 2018). However, direct method is essentially derived 
from optical flow method, whereas the current direct methods merely consider 
forward calculation.

Inspired by the important concept “dataset motion bias” raised in reference 
(Engel, Usenko, and Cremers 2016) which proposed a VO/SLAM algorithm 
using different strategies, e.g., forward and backward, whereas the perfor
mances were obtained differently, the objective of this paper is to enhance 
the accuracy of odometry estimation by jointly considering forward and 
backward estimation. Through detailed discussion, Yang et al. introduced 
a convincing reason about “motion bias” (Yang et al. 2018), while the experi
mental results showed that feature-based methods, such as ORB-SLAM (Mur- 
Artal and Tardós 2017), perform significantly better for backward-motion, 
whereas the direct methods, such as DSO (Engel, Koltun, and Cremers 2017) 
achieve slight influence. In response, they claimed that the feature which 
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nearby camera improves depth estimates when moving backward. The sum
marized rationales drove the developments of sparse monocular VO algorithm 
proposed by Pereira (Pereira et al. 2017), in which images are processed in 
reverse order. Besides, there are limited references further exploring the 
concept of motion bias.

The quality of depth estimation by triangulation is an important factor of 
motion bias in monocular VO. In contrast, in RGB-D VO, the quality of the 
depth data is sensitive to the variations of viewpoints, object materials and 
measure distances. Using the depth map of the current frame or the reference 
frame to calculate the 3D point cloud in the alignment part will also lead to 
different estimation results. Therefore, there is a potential possibility of motion 
bias in RGB-D visual odometry.

The purpose of this paper is to verify the forward-backward inconsistency 
characteristics in RGB-D direct frame alignment. As shown in Figure 1, we 
innovatively introduce the idea of motion bias to refine frame-to-frame 
motion estimation in direct RGB-D visual odometry. Our main contributions 
are summarized as follows:

(1) We deeply explore the issue of motion bias in RGB-D frame-to-frame 
motion estimation with the TUM RGB-D and ICL-NUIM datasets. We 
demonstrate that the reason of the inconsistency is the different quality of 
the depth data in current frame and reference frame. The forward and back
ward iterative calculations will lead to positive and negative bias, which can 
significantly improve the accuracy.

(2) We propose four strategy options to improve pose estimation accuracy: 
tight coupling (joint bi-direction estimation and two stage bi-direction esti
mation) and loose coupling (transform average with weights and transform 
fusion with covariance) for a thoughtful comparison. Results show that two 
stage bi-direction estimation achieves the best performance both on speed and 
accuracy.

(3) We carry out extensive experiments with different combined methods 
(e.g., Intensity or Gradient Magnitude, Forward Compositional or Inverse 

Figure 1. The flow chart of the proposed bi-direction motion estimation.
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Compositional, Single Direction or Bi-direction) on the benchmark datasets to 
demonstrate the effectiveness of our solution.

The rest of this paper is organized as follows: Section II introduces the 
current research w.r.t the research field of direct RGB-D visual odometry. The 
whole framework is discussed in Section III. Section IV clearly introduces the 
experiment condition and evaluates the results of experiments in ICL-NUIM 
and TUM RGB-D benchmark sequences. Finally, whole research and the 
future work are summarized in Section V.

Related Work

There are extensive literatures related with research on RGB-D visual odome
try (Civera and Lee 2019). In this section, our research attention is mainly 
focused on direct frame alignment-based approaches. Additionally, some 
methods related to the motion bias or forward-backward consistency are 
also be introduced.

Direct Frame Alignment

As a representative research, Kerl et al. (Kerl, Sturm, and Cremers 2013) 
introduced a Bayesian framework based Direct visual odometry (DVO) 
method, which estimated the camera motion between consecutive frames by 
minimizing the photometric error directly. It is worth noting that, Kerl (Kerl, 
Sturm, and Cremers 2013) also leveraged the merits of motion prior and 
robust error function for further improving the method. Klose et al. intro
duced different alignment strategy in optical flow method to direct RGB-D 
visual odometry, thus generating different methods, e.g., Forward 
Compositional (FC), Inverse Compositional (IC), and Efficient Second-order 
Minimization (ESM) (Klose, Heise, and Knoll 2013). Following the previous 
research, Babu (Babu et al. 2016) proposed a method, which novelly proposed 
additional probabilistic sensor noise model for geometric errors rather than 
considering t-distribution for optimizing photometric errors solely. Similar 
research in (Wasenmüller, Ansari, and Stricker 2016) leveraged the local depth 
derivatives to measure the reliability and transformed that into a weighting 
scheme which significantly reduced the drift.

Direct frame alignment algorithms rely on the photometric constancy 
assumption, which is not satisfied for real applications. In DSO (Engel, 
Koltun, and Cremers 2017), the photometric calibration model was used for 
complex lighting scene. In addition, several research considered other robust 
metric functions. Alismail et al. leveraged the squared distance between local 
feature descriptors instead of photometric error which shrinked the require
ments for illumination modeling (Alismail, Browning, and Lucey 2016). 
Compared with raw intensity values, edges are more stable in scenes with 

1140 J. CAI ET AL.



varying light conditions, in which the photoconsistency-based approaches gen
erally failed. Kuse and Shen proposed a novel direct approach which optimized 
the geometric distances of edge-pixels instead of photometric error (Kuse and 
Shen 2016). Schenk and Fraundorfer also introduced a robust edge-based visual 
odometry system by jointly minimizing edge distance and point-to-plane error 
(Schenk and Fraundorfer 2017a) for RGB-D sensors and extend it into 
a complete SLAM system (Schenk and Fraundorfer 2019). Zhou et al. proposed 
more efficient distance field methods for real-time edge alignment without 
losing accuracy and robust (Zhou, Li, and Kneip 2018).

However, the mentioned methods merely consider the forward direction 
from reference frame to current frame, which ignores the bi-directional 
strategies. To improve the defect about the single-direction strategy, our 
research explores the backward motion and introduces bi-direction estimation 
for improving the accuracy of the odometry.

Forward-backward Consistency and Motion Bias

The transitivity of regularize structured data can be categorized into forward- 
backward consistency or cycle consistency. Some current research are trying to 
exploit the merits about the forward-backward consistency. In current research, 
the pose consistency is incorporated into loss function to enforce forward- 
backward motion (Wong et al. 2020). In dense semantic alignment, Zhou 
et al. (Zhou et al. 2016) used a cycle consistency loss to supervise convolutional 
neural network training. In monocular visual odometry, Wong et al. employed 
bi-directional convolution LSTM (Bi-ConvLSTM) for learning the geometric 
relationship from image sequences pre and post and leveraged optical flow 
prediction to assist pose estimation (Wan, Gao, and Wu 2019).

For visual odometry, the intuitive sense about estimated trajectory should 
be the same despite the running algorithms on a sequence forward or back
ward. It is interesting to note that, recent research shows that different algo
rithms achieve different performances on a same data set which named as 
motion bias (Yang et al. 2018). Pereira et al. took advantage of backward 
movement in feature-based monocular visual odometry. Sparse features mov
ing away from the camera can improve both depth calculation precision and 
pose estimation robustness.

As we know, the depth map acquired by Kinect contains quite an amount of 
holes and the depth values on the edges suffer from big error. To overcome the 
shortcoming that single direction calculation using only one depth map, in our 
research, we introduce a similar idea to direct motion estimation with for
ward-backward for offsetting each other.
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Direct Motion Estimation

In this section, we introduce the proposed approach, namely the direct RGB-D 
visual odometry. First, we formulate the problem as a nonlinear least square 
minimization (Section 3.1). Then, we present a error metric function by 
gradient magnitude to deal with the challenge of illumination variation 
(Section 3.2). Finally, we propose four methods to incorporate the motion 
information using bi-direction (Section 3.3 and Section 3.4) for detail 
exploration.

Overview

Similar as in (Kerl, Sturm, and Cremers 2013), our goal is to estimate the RGB- 
D camera motion between a reference frame and the current frame. We 
assume the intensity image and the depth map at each timestamp to be 
synchronized and aligned, therefore a pixel xi ¼ ðui; viÞ

T in image space Ω 2
R 2 is corresponded to the depth Z xið Þ. The 3D point Pi ¼ ðXi;Yi;ZiÞ

T is 
related to the pixel xi, which is computed by the inverse of the projection 
function π as: 

Pi ¼ π� 1ðxi;ZiÞ ¼ Zi
ui � cx

fx
;
vi � cy

fx
; 1

� �T

(1) 

in which ðcx; cyÞ is the principal point of camera, and ðfx; fyÞ is the focal length. 
Zi is equal to the depth measurement Z xið Þ. Similarly, the projection function 
is given as: 

xi ¼ π Pið Þ ¼
Xifx

Zi
þ cx;

Yify

Zi
þ cy

� �

(2) 

Let T ¼ R; tð Þ 2 SEð3Þ denotes a rigid transformation between the two views, 
where R 2 SOð3Þ and t 2 R 3 represent rotation and translation respectively. 
Since the rotation matrix has constraints, i.e., RRT ¼ I; det Rð Þ ¼ 1, we use the 
Lie algebra seð3Þ to parameterize the transformation as a twist coordinates 
� ¼ v;ωð Þ. v is linear velocity, and ω is the angular velocity of the motion. For 
a given parameter vector �, the corresponding 4� 4 transformation matrix 
can be retrieved with the exponential map: 

T �ð Þ ¼ exp ω^ v
0T 0

� �� �

(3) 

where ω^ denotes the skew symmetric matrix of the angular vector ω. Then 
the full warping function is defined as: 
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τ �; xi;Z xið Þð Þ ¼ π T �ð Þ
Pi
1

� �� �

1:3

� �

¼ π T �ð Þ
π� 1 xi;Z xið Þð Þ

1

� �� �

1:3

� � (4) 

where ðÞ1:3 indexes the first three elements of the vector. The direct visual 
odometry estimates the motion � by minimizing the photometric errors 
between the reference frame Ir and the current frame Ic as: 

E ¼ min
�

X

xi2Ω
Ic τ �; xi;Z xið Þð Þð Þ � Ir xið Þð Þ

2 (5) 

The above problem is a nonlinear least square problem and can be solved by 
Gauss-Newton algorithm. The motion estimation T �ð Þ is updated by incre
ment Δ� ¼ � ðJTJÞ� 1JTr until convergence: T �ð Þ  T �ð ÞT Δ�ð Þ, where J is the 
stacked matrix of all Ji pixel-wise Jacobians and r denotes the residual vector. 
According to the chain rule, Ji is given by: 

Ji ¼
@ri

@x
¼
@Ic

@xi

@xi

@Pi

@Pi

@x
(6) 

Compared with the above Forward Compositional (FC) formulation, another 
Inverse Compositional (IC) approach uses incremental updates Δ� in terms of 
the reference frame Ir: 

EIC ¼ min
�

X

xi2Ω
Ic τ �; xi;Z xið Þð Þð Þ � Ir τ Δ�; xi;Z xið Þð Þð Þð Þ

2 (7) 

The Jacobian and update rule are formulated as JICi ¼
@Ir
@xi

@xi
@Pi

@Pi
@x and T �ð Þ  

T Δ�ð Þ� 1T �ð Þ respectively. The advantage of IC is that Jacobians do not require 
recomputation at every iteration and it is more efficient than FC. More details 
about different alignment strategies can be found in (Klose, Heise, and Knoll 
2013).

In order to handle outliers, (Kerl, Sturm, and Cremers 2013) analyzed the 
distribution of dense photometric errors for RGB-D odometry and showed the 
effectiveness of the student’s t-distribution. Therefore, we use the weight 
function w rið Þ derived from the student’s t-distribution: 

w rið Þ ¼
νþ 1

νþ ri
σ

� �2 (8) 

where ν denotes the degrees of freedom of the distribution, and variance σ2 is 
computed iteratively by: 

σ2 ¼
1
n

X

i
r2

i
νþ 1

νþ ri
σ

� �2 (9) 
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which will converges in few iterations. The update step is: 

Δ� ¼ � JTWJ
� �� 1JTWr (10) 

where W is a diagonal matrix with the weights w rið Þ.

Gradient Magnitude

In order to make the algorithm robust to illumination changes, Park et al. 
evaluated different direct image alignment methods (Park, Schöps, and 
Pollefeys 2017). The results show that the gradient magnitude (GradM) 
method performs well both on synthetic and real-world sequences. GradM 
has high illumination invariance properties for global and local changes. 
Therefore, we introduce the gradient-based visual odometry by aligning gra
dient magnitudes instead of intensities: 

E ¼ min
�

X

xi2Ω
Gc τ �; xi;Z xið Þð Þð Þ � Gr xið Þð Þ

2 (11) 

where G ¼ ÑIk k2 denotes the GradM of intensity image I. The only difference 
in optimization is the first term of Jacobian which calculates the second order 
image gradient.

Furthermore, as shown in Figure 2, most of gradient magnitudes in scene 
are close to 0 and have less effects on optimization problem. We can only select 
the pixels with larger gradient magnitude for computation. Note that sparser 
depth maps generally lead to higher drift, so we will not blindly pursue the 
reduction of runtime and set a higher threshold. In practice, a reasonable 
threshold is selected for minimizing the drift which described detailedly in 
(Park, Schöps, and Pollefeys 2017).

Bi-direction Estimation with Tight Coupling

Under an idealized situation, the forward motion is equal to the inverse of the 
backward motion. However, in many practical operations, the assumption 
fails due to the motion bias. We will discuss this phenomenon in the 

Figure 2. Examples of the intensity image (left) and gradient magnitude image (right).
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experiment section in detail. We define the motion estimation from the 
reference frame to the current frame as forward calculation: 

EForward ¼ min
�

X

xi2Ωr

Ic τ �; xi;Z xið Þð Þð Þ � Ir xið Þð Þ
2 (12) 

In the same way, the backward calculation from the current frame to the 
reference frame is: 

EBackward ¼ min
�

X

xj2Ωc

Ir τ � �; xj;Z xj
� �� �� �

� Ic xj
� �� �2 (13) 

where 

Tð� �Þ ¼ Tð�Þ� 1 

Joint Bi-direction Estimation
Through joint consideration of forward and backward estimations, our goal is 
to minimize the cost function as follow: 

E ¼ min
�

X

xi2Ωr

Ic τ �; xi;Z xið Þð Þð Þ � Ir xið Þð Þ
2

þ
X

xj2Ωc

Ir τ � �; xj;Z xj
� �� �� �

� Ic xj
� �� �2 (14) 

The energy function above can be optimized through iterative Gauss-Newton 
strategy. Similar to other direct methods, we also employ a coarse-to-fine 
scheme, which is similar as (Christensen and Hebert 2019).

Two Stage Bi-direction Estimation
To reduce computational complexity, we proposed a simple two stage bi- 

direction estimation method. As shown in Figure 3, the first stage in our 
scheme is to calculate the motion in a single direction which is the same as 
the conventional pyramid methods. The image pyramid is built with image 
resolutions being halved at each level. The motion estimation is first executed 

Figure 3. The schematic of bi-direction estimation method.
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at top pyramid level with the lowest resolution, then it can be propagated 
downward as an initialization for the next level. The second stage is that we 
only propose additional inverse calculation at the last layer assumed � with 
a good initial value. As a result, we can obtain a refined estimate of the motion.

Bi-direction Estimation with Loose Coupling

In addition to the above bi-direction estimation method, another strategy to 
leverage the motion bias is to run the whole algorithm forward and backward, 
respectively. Then a refined estimate of the motion can be obtained directly by 
calculating the average of two results.

Transform Average with Weights
Let Tf ¼ R1; t1ð Þ and T� 1

b ¼ R2; t2ð Þ be the two results of the frame to frame 
motion estimation. We define weights by photometric errors to describe the 
contribution of each transform: 

ω1 ¼
e2

e1 þ e2
; ω2 ¼ 1 � ω1 (15) 

where e1 and e2 are the mean photometric errors under transforms Tf and Tb. 
Since the rotation part of the transform is nonlinear and translation part is 
linear, those two parts should be calculated separately.

First, we use quaternions q1 and q2 to represent rotation matrix R1 and R2. 
Then the mean quaternion is obtained by the weighted averaging quaternions 
method proposed in Markley et al.’s paper (Markley et al. 2007): 

�q ¼ arg max
q2S

3
qTMq (16) 

where M ¼Δ
P2

i¼1
ωiqiqT

i is a 4� 4 matrix.

Second, translation is computed with the linear weighting directly as 
follows: 

�t ¼ ω1t1 þ ω2t2 (17) 

Finally, we convert quaternion and translation into the form of transformation 
matrix to obtain a new estimation.

Transform Fusion with Covariance
In addition to using reprojection photometric errors to set weights, we can also 
use uncertainty to analyze the accuracy of pose estimation. In this section, as 
depicted in Figure 4, the optimal estimation is fused by two estimations with 
covariance. We define two 6� 6 covariance matrices �f and �b to express the 
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uncertainty of forward and backward motion transformation (�f and �b) 
respectively. 

�f ¼ cov �f
� �
¼ JT

f Wf Jf

� �� 1
(18) 

�b ¼ cov �bð Þ ¼ JT
b WbJb
� �� 1 (19) 

where Wf and Wb denote the photometric uncertainty of all measurements 
described by student’s t-distribution in Equation (8). Jf and Jb are Jacobian 
matrixs defined in Equation (6).

To combine forward and backward estimates conveniently, we calculate 
optimal motion transformation �� directly in a closed form in seð3Þ. 

�� ¼ �� 1
f þ �� 1

b

� �� 1
�� 1

f �f � �� 1
b �b

� �
(20) 

Then the optimal estimation �T is obtained by �� with the exponential map. 

�T ¼ T ��
� �

(21) 

Evaluation

In this section, we propose a series of experiments on the TUM RGB-D 
benchmark (Sturm et al. 2012) and ICL-NUIM datasets (Handa et al. 2014). 
As recommended by Sturm et al. (Sturm et al. 2012), we use the root mean 
square error (RMSE) of the translational component of relative pose error 
(RPE) as metric. It is more suitable to measure the drift in frame to frame 
motion estimation. 

Ei ¼ Q� 1
i QiþΔt

� �� 1 B� 1
i BiþΔt

� �
(22) 

where Qi 2 SEð3Þ and Bi 2 SEð3Þ are the ground truth pose and estimated 
pose of the sequence, respectively.

Figure 4. Combining forward and backward pose estimates into a single fused estimate with 
covariance.
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Due to the measurement error of RGB-D sensor increases with measure
ment distance increasing, we only select the pixel where depth value greater 
than 0.5 m and less than 4.5 m. In multi-resolution optimization process, the 
total level of pyramid is 5 and Gauss-Newton algorithm will run until cost 
function update less than 0.003 or 20 iterations are reached. The degrees of 
freedom of the t-distribution ν is set at 5 as the same in (Kerl, Sturm, and 
Cremers 2013). GradM is calculated with a Sobel kernel and threshold is 
0.0235 for pixel selection. For fast prototyping, we implement all the proposed 
algorithms in unoptimized MATLAB code. All experiments are carried out on 
a laptop with Intel i7-7700HQ CPU (2.80 GHz) and 16 GB RAM.

Analysis of Motion Bias

To enhance our experiments, we evaluate the performance of all combina
tions of the following methods: (1) error metric: Intensity (Gray), Gradient 
magnitude (GradM); (2) alignment strategy: Forward-Compositional (FC), 
Inverse-Compositional (IC); (3) combined strategy: Forward (Fw), Backward 
(Bw), Joint bi-direction (Jbi), Two stage bi-direction (Tbi), Transform average 
with weights (Avg), and Transform fusion with covariance (Fus).

We run the methods on almost all the sequences in the TUM RGB-D and 
ICL-NUIM datasets (noisy and noise-free). As shown in Figure 5, we use 
different color blocks to represent the RMSE of the translational RPEs. 
Surprisingly, we did not find obvious inconsistencies in forward and backward 
motion while bi-directional consideration does improve accuracy on most 
sequences. The evaluation indicator is generally positive because it is calcu
lated in square mode. In order to show the positive and negative, we use 
histogram and boxplot to display the differences between the estimated posi
tion and ground truth on x, y, or z axis as shown in Figures 6 and 7. We can 
clearly see that the statistical means of forward and backward results are on 
each sides of 0. Different direction calculation will result in different signs of 
error. So the differences between the RMSE of the translational RPEs are not 
apparent since the absolute values are close to each other.

Furthermore, we take the sequence fr2/desk as an example and try to 
explain why add inverse direction calculation can improve accuracy. As 
shown in Figure 8, the most obvious phenomenon is that the x-axis position 
is always smaller than the ground truth when calculating forward. Conversely, 
the x-axis position is generally greater than the ground truth when calculating 
backward. Since the optimization objective function is not monotonous, 
calculations in different directions will cause it to converge to different local 
values. Besides, the range measurements of depth sensor (Kinect) will be 
affected by factors such as the material of the object, the environment lighting 
and camera angle. So the difference of missing data at the edges of depth map 
from different views will also result in forward/backward reprojection images 
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Figure 5. Results on ICL-NUIM assuming no noise (a), ICL-NUIM with simulated noise (b) and TUM 
RGB-D (e) datasets with different algorithms (c) for each row. Each column of (a) and (c) represents 
the same sequence which listed in (d). The sequence names of (e) are also listed in (f). The RMSE of 
the translational RPEs are color coded and shown as small blocks.
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inconsistent (as shown in Figure 9). We can clearly find that the two methods 
of bi-directional estimation make the results closer to the ground truth and 
offset the forward and backward differences.

Effect of Composed Methods

Overall, we evaluate 24 possible combinations as shown in Figure 5(c). The results 
indicate that the GradM-based methods perform better on real-world sequences 
than synthetic, especially for non-structure environments (fr3_nostructure_notex
ture_far, fr3_nostructure_notexture_near_withloop, fr3_nostructure_texture_far, 
and fr3_nostructure_texture_near_withloop, corresponding to the columns 17, 
18, 19, and 20 in Figure 5(e)). Meanwhile, the algorithms running on ICL-NUIM 
dataset show better performance than TUM RGB-D as a whole due to the higher- 
quality images and simpler environmental conditions.

For further illustration, we also provide four sequences, each from ICL- 
NUIM dataset with simulated noise and TUM RGB-D dataset, for quantitative 
evaluation as shown in Table 1. We can obviously find that the methods with 

Figure 6. Histogram of the differences between the estimated position and ground truth on x, y, or 
z axis. Red and blue represent forward and backward respectively.

Figure 7. Boxplot of the differences between the estimated position and ground truth on x, y, or 
z axis. Red and blue represent forward and backward respectively.
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Figure 8. Bi-directional estimation quantity analysis. The estimated trajectories of four methods on 
the fr2/xyz sequence of TUM dataset is ploted in different solid colors which black, blue, and yellow 
express x-axis, y-axis, and z-axis respectively. Ground truth is shown as a red dotted line for all axes.
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bi-directional calculation (Jbi, Tbi, Avg, and Fus) significantly improve the 
accuracy of the odometry. At the same time, we also find that the bi-directional 
pyramid estimation method (Tbi) has the best results on most sequences. 
Compared with handling data together (Jbi), Tbi can better utilize the data 

Figure 9. Comparison of reprojection in different directions in the fr2/xyz sequence of TUM 
dataset. (a) Gray image in Frame 296. (b) Forward reprojection result from Frame 296 to 300. (c) 
Enlarged detail of gray image in Frame 296. (d) Enlarged detail of forward reprojection result. (e) 
Gray image in Frame 300. (f) Backward reprojection result from Frame 300 to 296. (g) Enlarged 
detail of gray image in Frame 300. (h) Enlarged detail of backward reprojection result.

Table 1. Results of the RMSE of the translational RPE[m/s]. The “deskp” is short for “desk with 
person”. The “lr” and “of” also represent living room and office room in ICL-NUIM dataset with 
simulated noise. The bold indicates the best value and the underline indicates the second best.

lr kt0 lr kt1 of kt0 of kt1 fr1/360 fr2/deskp fr2/rpy fr2/xyz average

Gray+FC+Fw 0.0313 0.0195 0.0629 0.0266 0.0935 0.0185 0.0057 0.0076 0.0332
Gray+IC+Fw 0.0362 0.0212 0.0659 0.0292 0.0861 0.0219 0.0073 0.0095 0.0346
Gray+FC+Bw 0.0282 0.0186 0.0587 0.0278 0.0819 0.0186 0.0057 0.0071 0.0308
Gray+IC+Bw 0.0327 0.0212 0.0631 0.0330 0.0873 0.0220 0.0071 0.0087 0.0344
Gray+FC+Tbi 0.0302 0.0183 0.0613 0.0254 0.0822 0.0150 0.0037 0.0049 0.0301
Gray+IC+Tbi 0.0345 0.0189 0.0647 0.0281 0.0828 0.0172 0.0048 0.0063 0.0322
Gray+FC+Jbi 0.0289 0.0165 0.0575 0.0259 0.0851 0.0181 0.0037 0.0062 0.0302
Gray+IC+Jbi 0.0329 0.0172 0.0598 0.0306 0.0857 0.0217 0.0044 0.0077 0.0325
Gray+FC+Avg 0.0289 0.0163 0.0590 0.0260 0.0860 0.0213 0.0037 0.0060 0.0309
Gray+IC+Avg 0.0325 0.0164 0.0608 0.0294 0.0856 0.0170 0.0041 0.0073 0.0316
Gray+FC+Fus 0.0276 0.0153 0.0565 0.0252 0.0884 0.0180 0.0037 0.0060 0.0301
Gray+IC+Fus 0.0311 0.0171 0.0588 0.0292 0.0881 0.0214 0.0041 0.0073 0.0321
GradM+FC+Fw 0.0345 0.0187 0.0574 0.0301 0.0670 0.0178 0.0051 0.0065 0.0297
GradM+IC+Fw 0.0396 0.0203 0.0618 0.0404 0.0713 0.0235 0.0067 0.0089 0.0341
GradM+FC+Bw 0.0315 0.0175 0.0580 0.0287 0.0620 0.0177 0.0052 0.0068 0.0284
GradM+IC+Bw 0.0354 0.0182 0.0680 0.0362 0.0689 0.0240 0.0066 0.0091 0.0333
GradM+FC+Tbi 0.0341 0.0194 0.0561 0.0283 0.0610 0.0138 0.0032 0.0044 0.0276
GradM+IC+Tbi 0.0385 0.0193 0.0600 0.0380 0.0649 0.0180 0.0042 0.0060 0.0311
GradM+FC+Jbi 0.0327 0.0174 0.0566 0.0289 0.0636 0.0172 0.0034 0.0055 0.0282
GradM+IC+Jbi 0.0367 0.0171 0.0608 0.0353 0.0723 0.0235 0.0042 0.0077 0.0322
GradM+FC+Avg 0.0326 0.0173 0.0573 0.0282 0.0638 0.0170 0.0033 0.0055 0.0282
GradM+IC+Avg 0.0356 0.0159 0.0600 0.0332 0.0694 0.0231 0.0040 0.0075 0.0311
GradM+FC+Fus 0.0323 0.0170 0.0562 0.0278 0.0643 0.0171 0.0033 0.0055 0.0280
GradM+IC+Fus 0.0353 0.0157 0.0595 0.0331 0.0720 0.0233 0.0039 0.0075 0.0313
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due to whose additional backward estimation already well initialized with 
forward estimation. The results of transform fusion with covariance (Fus) 
are slightly better than the weighted transform average (Avg). As shown in 
Figure 10, we plot the estimated trajectories of five methods to explain the 
benefits of bi-directional consideration. The red curve and blue curve clearly 
show the positive and negative difference on y-axis. After the forward and 
backward calculations, this part of the error is offset.

In addition, results on real-world TUM RGB-D dataset also gain agreement 
with the previous work (Klose, Heise, and Knoll 2013) in which IC can slightly 
increase the convergence radius and improve the precision in some sequences 
(e.g., fr1/360). But results on synthetic ICL-NUIM dataset are mainly weak 
compared with FC.

In general, bi-directional consideration really works for improving the 
precision of RGB-D visual odometry. From our experiments, we observe 

Figure 10. The estimated trajectories of Gray+FC+Fw, Gray+FC+Bw, Gray+FC+Tbi, Gray+FC+Avg, 
and Gray+FC+Fus on the living room1 sequence of ICL-NUIM dataset with simulated noise.
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that GradM+FC+Tbi and Gray+FC+Tbi have better performance on realistic 
datasets. So in practice, we usually recommend these two combinations.

Comparison with State-of-the-art Methods

For the performance comparison with the state-of-the-art, we follow the previous 
research (Christensen and Hebert 2019), which leverages seven sequences on 
TUM benchmarks and choice two methods (Gray+FC+Tbi and GradM+FC 
+Tbi) to compare with the following methods: DVO-SLAM (Kerl, Sturm, and 
Cremers 2013), Canny-VO (Zhou, Li, and Kneip 2018), Canny-FF (Christensen 
and Hebert 2019), REVO (Schenk and Fraundorfer 2017b), ORB-SLAM2 (Mur- 
Artal and Tardós 2017), and RGBDSLAM (Endres et al. 2013). DVO-SLAM is 
a extended algorithm of combined depth error cost, keyframe and loop closure. 
Canny-FF is a frame to frame edge-direct visual odometry strategy, which 
leverages the photometric error. Canny-VO is a 3D–2D edge-direct visual odo
metry using the geometric error with oriented nearest neighbor fields. REVO 
represents robust edge-based visual odometry using machine-learned edges. ORB- 
SLAM2 (RGB-D version, there we only use prue tracking part for fair assessment) 
is the state-of-the-art feature based SLAM method. RGBDSLAM is also feature 
based method using ICP and graph optimization.

As shown in Table 2, our algorithms perform competitively and achieve better 
results on more than half of the dataset. The results of the Canny-FF method on 
some data sets performs better than the proposed method due to which only 
considers the photometric errors on the edge pixels. Canny-VO also achieves 
a highly accurate relative pose due to it usage of Canny edge features and nearest 
neighbor fields which is robust to the change of light. The results of ORB-SLAM2 
on fr1/xyz is best due to its good feature matching when scene views does not 
change much. It is worth noting that our methods are just frame-to-frame motion 
estimation method without any keyframe or loop closure. We assume that the 
random noises, missing depth data on edges and other factors, are independent in 

Table 2. Comparison of the performance of our methods with state of the art by the RMSE of the 
translational RPE [m/s]. The best result is with bold and second is with underscore. For fair 
comparison, we directly cited the results from the previous research (Zhou, Li, and Kneip 2018) 
and (Christensen and Hebert 2019).

Seq.
Gray+FC 

+Tbi
GradM+FC 

+Tbi
DVO- 
SLAM

Canny- 
FF

Canny- 
VO REVO

ORB2- 
SLAM RGBDSLAM

fr1/xyz 0.02576 0.02677 0.02661 0.02768 0.019 0.03202 0.01470 0.04193
fr1/rpy 0.02581 0.02351 0.04865 0.03126 0.034 0.03553 0.03221 0.07028
fr1/desk 0.03187 0.03643 0.04429 0.03022 0.031 0.07800 0.06178 0.05346
fr1/ 

desk2
0.04901 0.05340 0.05722 0.04387 0.131 0.07056 0.06535 0.06955

fr1/room 0.03962 0.04034 0.06427 0.04830 0.042 0.04816 0.07081 0.06666
fr1/plant 0.02528 0.03155 0.04362 0.02736 0.036 0.03063 0.04218 0.03789
fr2/desk 0.01201 0.01339 0.03248 0.01375 0.008 0.01426 0.03067 0.01400
average 0.02991 0.03220 0.04531 0.03127 0.043 0.04417 0.04539 0.05054
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two frames. Therefore, more information can be excavated by bi-directional 
estimation. On the other hand, forward motion can also provide a good initial 
value for backward motion in pyramid optimization so that a refined estimation 
could be obtained. Compared with DVO-SLAM, an improvement method of 
(Kerl, Sturm, and Cremers 2013) which is similar to our Gray+FC+Fw, our 
frame to frame pose estimation algorithm (Gray+FC+Tbi) is still very competitive 
without any frame-to-keyframe tracking or pose graph optimization techniques. 
We believe that the proposed method will be better with keyframe technology or 
local bundle adjustment.

Performance

As shown in Figure 11, the average time of the eight algorithms on four 
datasets are: 0.3421, 0.4515, 0.4386, 0.5994, 0.2888, 0.3655, 0.3696, and 0.4834 
(units are seconds). We observe that the GridM-based method does not reduce 
the time but increases the time. For example, the number of pixels of second 
frame on fr1/desk dataset in optimization are 232356 and 224233 for gray and 
GridM method respectively. We use coder profiler (Moore 2017) in MATLAB 
and find that the overall operating speed is not improved even though the 
number of points becomes smaller. Extra time comes from the additional 
gradient calculation. Moreover, pose estimation using IC is really faster than 
FC. Overall, the bi-directional calculation increases 23.89% of single forward 
estimation. We believe the performance of algorithm will be better when 
implemented in C/C++, which will be detail discussed in our future research.

Conclusion

In this research, we argue that motion bias plays an important role in the 
research of direct RGB-D visual odometry through the validation of sufficient 
experiments. Inspired by the raised completion, a novel bi-directional direct 
RGB-D visual odometry based on the Bayesian framework is introduced for 

Figure 11. Comparison of runtime for the eight algorithms on TUM RGB-D datasets.
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improving performance using different strategies. For clarifying the contribu
tions of our designed methods, we further investigate the characteristics of 
proposed methods by extensive experiments. For fair verification, we propose 
the comparison experiments through a series of popular benchmarks, which 
further demonstrates the superiorities about the joint optimization using both 
the forward and backward motions, thus improving motion estimation. In our 
future research, we intend to embed the designed methods into a complete 
direct RGB-D SLAM system for further improvements.
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