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An Effective Way to Large-Scale Robot-Path-Planning Using 
a Hybrid Approach of Pre-Clustering and Greedy Heuristic
W. C. Wang and R. Chen

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City, Taiwan

ABSTRACT
Robot-path-planning seeks the shortest path to optimize the 
motion cost for robots. In robot-path-planning, the computa
tional time will significantly increase if the moving targets rise 
largely, also known as the large-scale TSP. Hence, the current 
algorithms for the shortest path planning may be ineffective in 
the large-scale TSP. Aimed at the real-time applications that 
a robot must achieve as many goals as possible within limited 
time and the computational time of a robot has to be short 
enough to provide the next moving signal in time. Otherwise, 
the robot will be trapped into the idle status. This work proposes 
a hybrid approach, called the pre-clustering greedy heuristic, to 
tackle the reduction of computational time cost and achieve the 
near-optimal solutions. The proposed algorithm demonstrates 
how to lower the computational time cost drastically via smaller 
data of a sub-group, divided by k-means clustering, and the 
intra-cluster path planning. An algorithm is also developed to 
construct the nearest connections between any two uncon
nected clusters, ensuring the inter-cluster tour is the shortest. 
As a result, by utilizing the proposed heuristic, the computa
tional time is significantly reduced and the path length is more 
efficient than the benchmark algorithms, while the input data 
grow up to a large scale. In applications, the proposed work can 
be applied practically to the path planning with large-scale 
moving targets, for example, the employment for the ball- 
collecting robot in a court.

Introduction

Robot-path-planning has been prevailing in the field of robotics (Jahanshahi 
and Sari 2018). It aims to search the shortest path for a mobile robot, from 
a starting point to an ending one given in a finite workspace. In this research, 
the ending point is the same as the starting one, and every target past by the 
robot can be exactly visited once, which is the well-known traveling salesman 
problem (TSP). In the field of combinatorial optimization, it is a NP-hard 
problem (Holmqvist, Migdalas, and Pardalos 1997; Johnson and McGeoch 
2007) for finding the shortest Hamiltonian cycle in a graph, where no 
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algorithm with reasonable time is known for the solutions currently. Due to 
the NP-hard nature, it will be difficult to solve the large-scale TSP (Allwright 
and Carpenter 1989; Applegate and Cook 1993) when the moving targets 
become more and more, which requires enormous computational effort.

Aimed at the real-time applications, it is generally anticipated that a robot 
can achieve as many tasks or goals as possible within limited time. However, 
when the computational time is getting too long, it is unable to provide a robot 
with the next moving signal in time; instead, the robot will be mostly trapped 
into the idle status. Thus, it is necessary to alleviate a large part of idle status in 
a large-scale robot-path-planning, and some efficient heuristic algorithms have 
to be investigated, though only the near-optimal solutions are achieved.

This work proposes three models for the hybrid approach, combining the 
pre-clustering and construction method, and different variants of greedy 
searches, contributing on significant decrease of the computational complexity 
and searching of near-optimal solution paths. The proposed algorithm can be 
widely applied to the fields of logistics, traffic routing, and robotics, for 
example, to a robot for automatically collecting balls in a court.

The rest of this work is outlined below. Section 2 briefly addresses the 
related work. Section 3 specifies how to select the proper number of clusters 
to divide the large-scale input data based on the k-means clustering, as well as 
the construction method for nearest connection between two adjacent clusters. 
Section 4 proposes several variants of greedy searches within a cluster for 
a near-optimal path-planning. Section 5 shows the simulation results. Finally, 
Section 6 concludes the paper and gives the future prospection on this 
research.

Related Work

The TSP recommends that a successful salesman should travel in an efficient 
tour through as many cities as possible while each city can only be visited 
exactly once (Schrijver 2003). There are many variants of TSPs in the real 
world, and robot-path-planning in this work concerns the solution for the 
symmetric TSP. As a classical NP-hard combinatorial optimization problem, 
the symmetric TSP has attracted a plenty of developments on exact and 
heuristic algorithms. Menger established the groundwork in solving TSP in 
1930, generally thought as the possible beginning year for mathematic study of 
the TSP (Giesen 2000). A series of exact and heuristic algorithms for the TSP 
have been proposed to search optimal and near-optimal solutions, respec
tively. An exact algorithm, typically derived from the linear programming 
formulation and combinatorial optimization of the TSP, is computationally 
expensive to solve the optimal tour under the large-scale path planning. To 
avoid tremendous time cost, numerous heuristic algorithms have been devel
oped to search a near-optimal solution for the TSP. Through the heuristic 
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algorithms, the approximate solutions can be obtained within competitively 
short computational time, but close enough to the globally optimal solution 
(Abdulkarim and Alshammari 2015).

Despite being designed in the early 1960s, the dynamic programming (DP) 
was broadly applied to solve TSP. The algorithm, holding the time complexity 
O(n22n) and faster than the naive solution O(n!) for solving an n-city instance, 
has been developed by Bellman (1958, 1962), and Held and Karp (1962) over 
the past fifty years. It was hence called the Bellman-Held-Karp or Held-Karp 
algorithm, providing the best asymptotic bound that has been achieved to 
date. However, it still costs the exponential time and space complexity, which 
results in infeasibility even for slightly higher number of cities.

The branch-and-bound (B&B) algorithm (Laporte 1992; Lawler 1985) is 
essentially considered as a tree search, which performs an exhaustive search 
for the best solution in the search space, and explores the branch nodes in the 
search tree one by one to see if any new candidate solution can be yielded 
under examining the potential partial solutions. Meanwhile, a bound value is 
given to assess how a partial solution approaches the optima and to decide 
whether a better branch of the active node should be expanded. The B&B 
algorithm is an exact technique (i.e., gives definite exact optima); thus, it 
cannot solve the TSP in polynomial time.

The simulated annealing (SA) was a method introduced in 1983 to conquer 
the drawback of hill climbing (HC), which is highly possible to be trapped into 
only the local optimum when solving global optimization, like the TSP 
(Kirkpatrick, Gelatt, and Vecchi 1983). With the SA, a stochastic tour (solu
tion) at each iteration is selected and reordered by slightly modifying the 
sequence of a few cities to obtain a new tour, till the approximate optimal 
solution can be finalized, as the value of probability acceptance function 
decreases progressively toward zero. Nevertheless, the repeated annealing of 
the SA often takes expensive time to compute the cost function. Moreover, the 
SA is still a kind of heuristic method so that it cannot tell whether it has found 
an optimal solution in the end.

The genetic algorithm (GA), invented by Holland (1975), is a widely used 
heuristic technique to search an optimally ordered sequence by imitating the 
progress of natural evolution. For solving the TSP, the GA (Potvin 1996) 
iterates the candidate solutions, represented by chromosomes in the popula
tion, until the best-fitted solution is found. The trial-and-error tuning is 
deeply necessary for all the parameters in the GA, such as the formulation of 
chromosomes, crossover operators, mutation rates, fitness functions, selec
tion criterion of offspring. Therefore, the GA may be exposed to the risks of 
lasting for long convergence epochs and getting stuck in a local optimum. 
Consequently, the GA cannot absolutely find the global optimum for 
the TSP.
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Though being efficient approaches to solve the TSP, heuristic algorithms 
would also suffer growing computational time cost when the scale of TSP 
becomes larger. Many researches proposed the partitioning methods to reduce 
the heavy computational time cost in the large-scale TSP. For solving an n-city 
instance by the Strip Algorithm (Strip) (Beardwood, Halton, and Hammersley 
1959; Johnson, McGeoch, and Rothberg 1996; Karp and Steele 1985; 
Selamoglu, Salhi, and Sulaiman 2017), the minimal enclosing rectangle is 
divided into 

ffiffiffiffiffiffiffiffi
n=3

p
equal-width vertical strips. For each strip the cities are 

ordered by top-bottom way; then, the entire tour is iteratively leveraged by 
running the strips from the leftmost to the rightmost, as well as the last edge 
from the final city in the rightmost strip to the first one in the leftmost strip.

Bentley (1992) proposed the Fast Recursive Partitioning (FRP), starting 
with the minimal enclosing rectangle, which is followed by the step that 
partitions each rectangle, which includes more than 15 cities, into two rec
tangles with nearly a half of cities. If the rectangle owns the length larger than 
the width, the median x-coordinate of cities, where a vertical partition occurs, 
can be found in the rectangle. As well, a horizontal partition can be found in 
a similar way. The derived rectangles with 15 or less cities are named buckets, 
nearest neighbors of which will be connected to form an overall tour.

The heuristic of Spacefilling Curve (SFC) (Platzman and Bartholdi 1989; 
L’Ecuyer et al. 2018) requires the time complexity of O(n log n) to solve an 
n-city problem, because it is essentially a sorting technique. It visits the cities 
along the spacefilling curve, containing 2 m identical triangles in the m-th 
partition of the entire dataset. Each successful partition can be retrieved by 
bisecting each triangle in the previous partitioning step, and then a list-sorting 
technique is employed to obtain the subtours for all partitions, which can be 
thus merged to a complete heuristic tour.

Karp’s (1977) Partitioning approach (Karp) firstly constructs the k-d tree 
(Bentley 1975) by recursively dividing all cities into smaller parts using cuts 
from both horizontal and vertical directions, until no set of the partition has 
more than an amount of cities, which is a setting parameter. Then the DP 
(Bellman 1958, 1962) is applied to solve the optimal paths for all partitioned 
subsets, and the shared medians are utilized to iterate the final entire tour.

This research proposes the hybrid approach, merging the advantages of 
k-means clustering and greedy search, called as the pre-clustering greedy 
heuristic, to obtain the near-optimal path for a mobile robot by combining 
pre-clustering and various greedy searches.

Pre-Clustering and Construction Method

When the input scale of the TSP grows larger and larger, it is crucial to shorten 
the computational time for a mobile robot to work continuously from the 
current step to the next one or without idling due to no moving signal sent in 

1162 W. C. WANG AND R. CHEN



time. To divide a dataset would be one of the efficient methods to reduce the 
running time cost of algorithm. The proposed partitioning method, stimulated 
by the concept of the divide-and-conquer algorithm, separates the entire 
dataset into several segments using k-means clustering (Jain, Duin, and Mao 
2000; Kaufman and Rousseeuw 1990). Then, the optimal path for each seg
ment will be obtained using the algorithm proposed next section. Finally, the 
construction method connects all segments and obtains the entire solution 
path. In our proposed pre-clustering and construction methods, the computa
tion loading on the embedded system will be dramatically lessened to con
tinuously drive a mobile robot from one step to the next one, without suffering 
excessive idle time.

Pre-Clustering Method

The k-means clustering is an unsupervised machine learning algorithm, which 
has been used in a wide range of applications, such as data mining and 
optimization, because of its simplicity (Wagstaff et al. 2001). Given a set of 
n data points in m-dimensional space Rm and an integer k, it determines a set 
of k centers in Rm, in order to minimize the within-cluster sum of squares 
(WCSS) with respect to each cluster’s nearest center. This work employed the 
Lloyd’s algorithm, which has been successful in the clustering either the 
centers have been stabilized or the defined number of iterations, denoted by 
t, have been achieved. The latter was chosen to avoid infinite divergence in 
practical applications. Hence, when k, m, and t are constants, the Lloyd’s 
algorithm can behave in a manner of linear time complexity, which is O 
(nkmt).

Figure 1 shows many balls laying in a court where each point represents 
a ball. The task of a mobile robot is to collect all balls at desired efficiency in 
order to reach maximum goals within limited power supply; that is, the robot 
should be running with as less idles as possible. To reduce the learning cost, 
the balls in Figure 2 are divided into three subgroups.

Construction Method

The proposed construction algorithm discovers the nearest points between 
any two adjacent clusters, and then yields the shortest distance between these 
two adjacent clusters. The optimal path inside each cluster also requires to be 
obtained. 

argmin
xα

β;y
α
β

� �
; xα0

β� ;y
α0
β�

� �
Dist xα

β; y
α
β

� �
; xα0

β� ; y
α0
β�

� �� �
(1) 
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where the function of Dist is used to obtain the metric of Euclidean distance, 
and (α; α0) denotes each pair of any two adjacent clusters, which can be either 
of (1, 2), (2, 3), and (3, 1) from numbering three clusters annotated in Figure 2. 
The points within a cluster are parametrized as the variables β and β�, being 
any one integer chosen between 1 and n, respectively.

For example, if the second point in Cluster 1 and the first point in Cluster 2 
are the nearest, the optimal solution for Equation (1) is the pair of x1

2; y1
2

� �
and 

x2
1; y2

1
� �

, as illustrated in Figure 2.
With the same clusters and points as in Figure 2, Figure 3 displays the 

proposed algorithm for the nearest connection between any two clusters by 
utilizing the Euclidean metric to obtain the distance between any two points. 
The algorithm in Equation (1) spends the time complexity, O(n2). There exist 

Figure 1. Demonstration of balls laying on the court.

Figure 2. Grouping (by gray contours) of balls on the court.
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three unconnected segments among all three clusters. As a result, it needs three 
cycles for calculating each nearest distance. And each cycle should recursively 
compute the distance of any two points, coming from two adjacent clusters.

Providing n points for each cluster, overall 3n2 computational steps will be 
required to obtain three pairs of nearest points among three clusters. Figure 3 
shows the final results for all nearest points; points in pair one are x1

1; y1
1

� �
and 

x3
n; y3

n
� �

, points in pair two are x2
1; y2

1
� �

and x1
n; y1

n
� �

, and points in the last pair 
are x3

1; y3
1

� �
and x2

n; y2
n

� �
. The subscripts 1 and n represent the starting and 

ending points, respectively, for the TSP.

Variants of Greedy Heuristics

Prior to this section, all segments were derived by the pre-clustering method. 
This section addresses several variants of greedy heuristics to obtain the 
optimal tour inside each segment. As long as all the optimal paths inside all 
clusters are acquired, the optimal tour starting from and ending at x1

1; y1
1

� �
can 

be also finalized. Generally speaking, the heuristic algorithms for the TSP 
usually obtain near-optimal solutions, where several crossing routes might 
occur to contribute to the excess tour length. In order to obtain the minimum 
excess tour, this work organizes candidates of greedy searches to determine the 
appropriate paradigm for lowering as many crosses as possible within each 
cluster. The proposed three variants of greedy searches are the entire, binary, 
and recursive models, where the binary and recursive models are designed for 
the utilization of multi-processing threads to save the overall computational 
time. From Figure 4 to 6, the starting and ending points represent the initial 
and final positions of a mobile robot, respectively, in the same cluster, as 
illustrated in Figure 3.

Figure 3. Nearest connections among all clusters.
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Entire Greedy Search (EG)

Once walking from the starting point (S), a mobile robot will determine the 
nearest point to itself as the next node in the tour using the greedy search. The 
correct optimal route in a cluster, S-T1-T2-T3-T4-E, is depicted as Figure 4(a), 
where at each node it moves toward the nearest node in next step. Figure 4(b) 
shows a suboptimal route sequenced as S-T2-T1-T4-T3-E. Node T2 is farther 
from node S than node T1, but after node S, the mobile robot firstly moves to 
T2 instead of T1. Likewise, posterior to node T1, farther node T4 is selected as 
the next node, instead of T3.

Binary Greedy Search (BG)

Inspired by the binary search, this model firstly finds the middle point (M) in 
the sequence of nodes, and two routes are planned simultaneously from the 
starting point (S) and the ending point (E) respectively, to node M. Then the 
two routes are combined into the final optimal route in a cluster. A cluster with 
nine nodes is shown for explanation, as described in Figure 5. In the first part, 
a sub-route from node S to node M is obtained as the sequence, S-T1-T2-T3 
-M, while in the second part, a sub-route from node E to node M has also 
resulted in the sequence, E-T7-T6-T5-M. To successfully combine the two 
sub-routes, the sub-route of the second part is reversed as the sequence, M-T5- 
T6-T7-E, and is appended to the sub-route of the first part. The final whole 
route will be sequenced as S-T1-T2-T3-M-T5-T6-T7-E.

Figure 4. The route of entire greedy search.

Figure 5. The route of binary greedy search.
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Recursive Greedy Search (RG)

After the pre-clustering some clusters would contain more than 10 nodes; 
thus, a few crossing routes might occur in the planned route if the above
mentioned models are utilized. Besides, the more nodes in one cluster, the 
more search time cost. Therefore, a solution is proposed to divide the first- 
hand cluster into several partitions, and to recursively solve the resulted 
partition by the aforementioned entire greedy search. As shown in Figure 6, 
the overall nodes are divided into four partitions, each sub-route of which will 
be optimized using the entire greedy search as S-T1-T2, T2-T3-T4-T5, T5-T6- 
T7-T8-T9, and T9-T10-T11-T12-E, respectively. At the final step, according to 
the bounding nodes, T2, T5, and T9, it can achieve the overall path, sequenced 
as S-T1-T2-T3-T4-T5-T6-T7-T8-T9-T10-T11-T12-E, after connecting all four 
sub-routes from the starting to the ending points in one first-hand cluster.

Experimental Results

In this section, the experimental testbed and setup, and evaluation of our 
proposed algorithm, and comparison with other methods are presented.

Environment Setup

The experiments are carried out in the hardware platform, a portable compu
ter equipped with the CPU of Intel Core i5 1.6 GHz and the RAM of 8 GB. 
Several testing instances are selected from the TSPLIB (Reineit) with a few 
hundreds to around 10 thousands of cities. Over the simulations, the results of 
running time are recorded for all selected testbeds.

Estimation

In this work the hybrid approach, divided into three models as PC-EG, PC- 
BG, and PC-RG, (PC-xG), represented as entire, binary, and recursive greedy 
searches, respectively, for all pre-clustered segments. The performances of the 
proposed approach, for three TSPLIB cases, such as kroA100, rd400, and 
pr1002, are demonstrated as shown from Figure 7–9. Observing the results, 

Figure 6. The route of recursive greedy search.
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Figure 7. The resulted tour by the proposed approach for kroA100.
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Figure 8. The resulted tour by the proposed approach for rd400.

APPLIED ARTIFICIAL INTELLIGENCE 1169



Figure 9. The resulted tour by the proposed approach for pr1002.
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it can realize that when less crossing routes occur in the plot, the shorter tour 
length will be derived.

Firstly, for the case of kroA100 exhibited in Figure 7 (a), (b), and (c), 
the shortest path, solved by the model of PC-RG, possesses the least 
crossing routes among three models. For the second case of rd400 shown 
in Figure 8 (a), (b), and (c), the paths solved by the models of PC-EG 
and PC-RG present similar distribution of crossing routes. Among three 
subplots for the case pr1002 shown in Figure 9 (a), (b), and (c), the 
model of PC-EG that owns the shortest path also contains the minimal 
crossing routes.

As listed in Table 1, this work evaluates the performances of the different 
proposed heuristics for the TSPLIB cases with under 1,000 data points, each of 
which owns its optimum for the benching reference. The more percentage in 
Table 1 is, the less performance the algorithm offers, and vice versa. It can be 
found that the PC-RG performs better than the others under the cases with 
input sizes under 200. However, the PC-EG will be the better one to solve the 
path planning when the input size of the case climbs up to more than 200, 
which can be referred as the threshold input size for the large-scale path 
planning for mobile robots. Conversely, the PC-BG gives the worse perfor
mance than the other two models of PC-EG and PC-RG, and is getting worse 
with the increase of the input size. It can be observed from the results with 
input sizes larger than 200 in Table 1, the average percentage of excess of the 
PC-BG over the optimal bound is near or over 1.5 times as poor as the one of 
the PC-EG. For example, the result of the PC-EG is up to over 50% greater 
than the one of the PC-BG for the TSPLIB cases of pr299, d657, and rat783. 
Furthermore, it is worth to notice that the PC-EG can guarantee that the 
solution quality will not vary in much amount as the input size grows up, since 
its average percentages of excess fluctuate slightly around 30% over the 
optimal bound, for the cases with input sizes larger than 200. Therefore, in 

Table 1. Running results in average percentage (%) of excess over the optimal bound provided by 
the TSPLIB, for algorithms of PC-EG, PC-BG, and PC-RG.

Algorithm

Case PC-EG PC-BG PC-RG

eil51 13.4 13.7 12.1

kroA100 19.4 25.1 16.7
kroB200 26.1 31.6 25.1
pr299 25.2 42.0 28.7

rd400 30.3 44.6 34.6
rat575 30.8 45.9 36.5

d657 30.0 46.7 32.9
u724 33.8 45.3 37.3

rat783 30.1 47.7 36.3
pr1002 30.2 43.6 36.8
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this work, the PC-EG can be firmly employed to solve the TSPLIB cases with 
more than 1,000 data points, deemed to be closer to the real-world 
applications.

Table 2 presents the running results of more than 1,000 data points among 
the proposed model of PC-EG and other benchmark algorithms on the aspect 
of average percentage of excess – less for better performance – over the 
optimal bound provided by the TSPLIB. It can be apparently observed that 
the maximum tour by the proposed approach exceeds no more than 35% of 
the optimal bound, which is however surpassed by the other benchmarks for 
a majority of tested TSPLIB cases. For example, compared to other algorithms, 
the Strip (Vertical) and FRP obtain the worst running results with the excess of 
close to 100% over the optimal bound, which is three times as many as the PC- 
EG. As well, the results yielded by the algorithms of SFC and Karp exceed the 
optimal bound maximally in about twice amount as many as the PC-EG. 
Besides, the proposed algorithm PC-EG deviates from the optimal bound by 
smaller than 30%, which is much superior to other benchmark algorithms in 
Table 2, when the input size increases up to more than 10,000. It can be 
conclusively entailed that the proposed algorithm thoroughly outperforms 
other benchmarks in the TSPLIB cases with the larger input scales.

Finally, in Table 3, the proposed algorithm holds the advantage on compu
tational time cost by comparing it to the algorithms of FRP and Karp. For the 
cases with input sizes larger than 10,000 in Table 3, the Strip and SFC can 
obtain the running time below one minute, which is shorter than the time 
consumed by the remaining algorithms as the FRP, Karp, and the proposed 
one. Nevertheless, as shown in Table 2, the proposed algorithm PC-EG, 
computing much shorter paths than the Strip and SFC, can run a task with 
over 10,000 data points by spending between one and two minutes, which can 
be reasonably considered for the robots operating in several hours. On the 
other side, the two weakest algorithms of FRP and Karp spend longer time, 

Table 3. Running time (seconds) for algorithms of PC-EG, Strip, FRP, SFC, and Karp.

Algorithm

Case PC-EG Strip (Vertical) FRP SFC Karp

pr1002 2.6 0.8 1.2 0.4 3.8

pcb1173 3.0 1.0 1.6 0.6 4.0
rl1889 5.4 2.1 2.7 1.0 7.6
u2319 6.8 2.7 3.6 1.4 13.2

pcb3038 9.8 4.7 4.5 2.7 39.8
fnl4461 11.9 5.0 7.2 3.5 40.3

rl5915 18.4 10.3 23.2 9.2 71.3
rl5934 19.2 11.2 25.7 9.8 72.1

brd14051 56.9 30.1 79.5 26.3 376.5
d15112 72.3 39.6 96.3 42.9 406.7
d18512 93.2 41.4 127.6 46.8 450.8
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from a half to four times larger than the proposed one PC-EG. In practice, the 
proposed algorithm guarantees that a robot will not act on overlong idle status 
during its working period, as well as walk on shorter paths than other parti
tion-based benchmarks.

Conclusion and Future Work

Aimed at the real-time applications that a robot must achieve as many goals 
as possible within limited time and the computational time of a robot has to 
be short enough to provide the next moving signal in time to avoid being 
trapped into the idle status. This work proposes a hybrid approach, combin
ing the pre-clustering and construction methods with different types of 
greedy searches for a mobile robot in the large-scale TSP. While achieving 
only near-optimal solutions, it is verified that the proposed effective hybrid 
approach competes against other benchmark algorithm on significantly 
reducing the computational time. The pre-clustering based on the 
k-means algorithm is employed to partition the entire dataset into several 
clusters; then an algorithm, the construction method, is developed to 
shorten the connected paths between the adjacent clusters such that the 
overall path cost can be further reduced. Finally, by fusing three types of 
greedy searches, the proposed hybrid heuristics, PC-EG, PC-BG, and PC- 
RG are developed to solve the optimal paths in all clusters. For the large 
input scale over 10,000, the PC-EG, one of the three proposed heuristics, 
earns the best performance on the paths that are almost one time shorter 
than most of the benchmark algorithms in Table 2, and on the time cost that 
is between one and two minutes, which is sound for a several-hour operat
ing robot not to act on overlong idle status during its working session. 
Cogently, the PC-EG is recommended to solve the large-scale path planning 

Table 2. Running results in average percentage (%) of excess over the optimal bound provided by 
the TSPLIB, for algorithms of PC-EG, Strip, FRP, SFC, and Karp.

Algorithm

Case PC-EG Strip (Vertical) FRP SFC Karp

pr1002 30.2 52.2 64.1 40.7 42.2

pcb1173 33.1 29.7 61.1 40.9 43.3
rl1889 32.7 103.2 86.1 63.5 78.3
u2319 22.9 13.4 35.8 12.8 9.7

pcb3038 32.6 27.2 55.7 40.5 23.1
fnl4461 29.2 30.8 49.2 32.3 42.7

rl5915 31.6 115.8 95.9 60.3 55.0
rl5934 29.8 112.6 84.7 59.9 55.5

brd14051 27.6 44.5 52.3 31.6 37.8
d15112 27.7 43.1 49.6 32.3 59.5
d18512 26.3 34.5 53.0 30.5 45.8
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for a mobile robot with from a few hundreds to many thousands of moving 
targets in this work.

One of the possible applications of this work is to implement the ball- 
collecting robot in a court or many other real-world applications, such as the 
fields of logistics, traffic routing, components routing on the VLSI, the pro
blem of plant locations in the plane, and various planar multi-vehicle delivery 
problems.
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