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Mixed Biogeography-Based Optimization for GENCOs’
Maintenance Scheduling in Restructured Power Systems
Abdolvahhab Fetanata and Gholamreza Shafipourb

aDepartment of Electrical Engineering, Behbahan Branch, Islamic Azad University, Behbahan, Iran;
bYoung Researchers and Elite Club, Behbahan Branch, Islamic Azad University, Behbahan, Iran

ABSTRACT
Power industry restructuring has brought new challenges to
the generation unit maintenance scheduling problem.
Maintenance scheduling establishes the outage time schedul-
ing of units in a particular time horizon. In the restructured
power systems, the decision-making process is decentralized
where each generating company (GENCO) tries to maximize its
own benefit. Therefore, the principle to draw up the unit
maintenance scheduling is different from the traditional cen-
tralized power systems. The objective function for GENCOs is
to minimize his maintenance investment loss. Therefore, he
hopes to put its maintenance on the weeks when the mar-
ket-clearing price is lowest so that maintenance investment
loss descends. This paper addresses the unit maintenance
scheduling problem of GENCOs in restructured power systems.
The problem is formulated as a mixed integer programming
problem, and it is solved by using an optimization method
known as biogeography-based optimization (BBO). BBO is sim-
ple to implement in practice and requires a reasonably small
amount of computing time and a small amount of data com-
munication. BBO has been tested by applying it to a GENCO
with three generating units. This model consists of an objective
function and related constraints, e.g., maintenance window,
generation capacity, load and network flow. The simulation
result of this method is compared with a classic method. The
outcome is very encouraging and proves that BBO is powerful
for minimizing GENCOs’ objective function.

Introduction

In restructured power systems, unit maintenance scheduling will not be
decided only by the system dispatch center but will be mainly decided by
generation companies (GENCOs). In this environment, GENCOs will try to
schedule their units’ maintenance according to the operating conditions of
their units, the quotations on the energy market and other economic factors.
The goals of their unit maintenance schedule are to try to make their units
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have as long as possible life span and to make their power production earn as
much as possible profit.

The power station maintenance department exists to help the production
function to maximize plant reliability, availability and efficiency by determin-
ing both short- and long-term maintenance requirements and by carrying
out the work accordingly. This includes work to comply with statutory and
mandatory requirements and investigations into plant problems. The depart-
ment has to make the most economic use of its available resources; this is
achieved, in part, by having a level of staff (engineering, supervisory, craft) to
deal with the general day-to-day steady workload and by making alternative
arrangements to cater for work load peaks (Mohammadi Tabari,
Pirmoradian, and Hassanpour 2008a).

To achieve the above goal, periodic servicing must take place and normally
falls under the following items (Mohammadi Tabari, Pirmoradian, and
Hassanpour 2008a):

(1) Planned maintenance: overhaul, preventive maintenance
(2) Unplanned maintenance: emergency maintenance

Preventive maintenance is expensive. It requires shop facilities, skilled labor,
keeping records and stocking of replacement parts. However, the cost of
downtime resulting from avoidable outages may amount to 10 or more times
the actual cost of repair. The high cost of downtime makes it imperative to
economic operation that maintenance be scheduled into the operating sche-
dule (Mohammadi Tabari, Pirmoradian, and Hassanpour 2008a). The main-
tenance scheduling problem is to determine the period for which generating
units of an electric power utility should be taken off line for planned
preventive maintenance over the course of a 1 or 2-year planning horizon,
in order to minimize the total operating cost while system energy, reliability
requirements and a number of other constraints are satisfied (Marwali and
Shahidehpour, 1998b).

Very recently, a new optimization concept, based on biogeography, has
been proposed by Simon (Simon 2008). This new approach is known as
biogeography-based optimization (BBO) (Ma and Simon 2011; Simon 2008,
2011a, 2011b). Biogeography is the study of the distribution of animals and
plants over time and space. Its aim is to elucidate the reason of the changing
distribution of all species in different environments over time. The environ-
ment of BBO corresponds to an archipelago, where every possible solution to
the optimization problem is an island. Each solution feature is called a
suitability index variable (SIV). The goodness of each solution is called its
habitat suitability index (HSI), where a high HSI of an island means good
performance on the optimization problem, and a low HSI means bad per-
formance on the optimization problem. Improving the population is the way
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to solve problems in heuristic algorithms. The method to generate the next
generation in BBO is by immigrating solution features to other islands and
receiving solution features by emigration from other islands.

BBO has been applied to real-world optimization problems such as power
system optimization (Bhattacharya and Chattopadhyay 2011; Rarick et al.
2009; Roy, Ghoshal, and Thakur 2010) and sensor selection (Simon 2008).

This paper solves a GENCO’s maintenance scheduling problem in the
restructured power systems using BBO.

Solution approaches

Many efforts which are categorized as follows have been done in the main-
tenance scheduling field:

(1) Ant colony optimization for continuous domains (ACOR) (Fetanat
and Shafipour, 2011a)

(2) Harmony search algorithm (Fetanat and Shafipour, 2011b)
(3) Quantum-inspired evolutionary algorithm (Fetanat et al. 2011)
(4) Lagrangian relaxation (Geetha and Shanti Swarup 2009)
(5) Particle swarm optimization (Siahkali and Vakilian 2009)
(6) Implicit enumeration (Mohammadi Tabari, Pirmoradian, and

Hassanpour 2008a)
(7) Meta heuristic-based hybrid approaches (Dahal and Chakpitak 2007)
(8) Ant colony optimization (Foong 2007)
(9) Fuzzy logic (El-Sharkh, El-Keib, and Chen 2003; Huang, Lin, and

Huang 1992; Leou 2001; Leou and Yih 2000)
(10) Expert systems (El-Sharkh and El-Keib 2003; Lin et al. 1992)
(11) Tabu search (El-Amin, Duffuaa, and Abbas 2000)
(12) Simulated annealing (Daha et al. 2000)
(13) Mixed integer programming (Da ilva, E. L, Schilling, M. T., & Rafael,

M. C 2000)
(14) Decomposition methods (Marwali and Shahidehpour, 2000a)
(15) Goal programming (Moro and Ramos 1994)
(16) Neural networks (Kim et al. 1999)
(17) Linear programming (Chattopadhyay 1998)
(18) Deterministic approaches (Marwali and Shahidehpour, 1998a)
(19) Genetic algorithm (Barke and Smith 2000; Huang 1997, 1998; Wang

and Handschin 2000)

Mixed integer programming problem

Problem contexts that involve both integer and continuous (real) decision
variables are termed mixed integer programming.
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Many real-world applications (e.g., airline crew scheduling, vehicle rout-
ing, production planning, etc.) require some variables to be integer. Some of
the GENCOs’ maintenance scheduling problems are kind of mixed integer
programming (Shahidehpour and Marwali 2000c).

In our proposed technique, integer variables are primarily released in the
form of a real value. While running the algorithm, these variables which have
to be changed into integer values are rounded to the closest integer value. In
other words, suppose x is the same real value that is supposed to be changed
into integer value, so if x< xb c þ 0:5, then x is changed into xb c; otherwise, x
is changed into xb c.

Method and formulations

We begin this section by presenting the general form of optimization pro-
blems. We then give the biogeography theory. Finally, we describe how the
biogeography theory of the previous section can be applied to optimization
problems.

General form

The optimization problem is specified as follows:
Minimize f ~X

� �
Subject to

gi ~xð Þ � 0 i ¼ 1; 2; . . . ; M:
hj ~xð Þ ¼ 0 j ¼ 1; 2; . . . ; P:

Lxk � xk � Uxk k ¼ 1; 2; . . . ; N:
(1)

where f ~X
� �

is the objective function, M is the number of inequality con-
straints and P is the number of equality constraints. x is the set of each
decision variable xi and N is the number of decision variables. The lower and
upper bounds for each decision variable are Lxi and Uxi, respectively. Static
penalty functions are used to calculate the penalty cost for an infeasible
solution. The total cost for each solution vector is evaluated using

fitness ~X
� � ¼ f ~X

� �þXM
i¼1

αi �min 0; gi ~xð Þ½ �j j þ
XP
j¼1

βj

�min 0; hj ~xð Þ� ��� ��: (2)

where αi and βj are the penalty coefficients. Generally, it is difficult to find a
specific rule to determine the values of the penalty coefficients and normally
these parameters remain problem dependent.
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Biogeography

Biogeography describes how species migrate from one island to another, how
new species arise and how species become extinct. A habitat is any island (area)
that is geographically isolated from other islands. Areas that are well suited as
residences for biological species are said to have a high HSI. Factors that
influence HSI include rainfall, diversity of vegetation, topographic features,
land area and temperature. The variables that characterize habitability are called
SIVs. SIVs can be considered as the independent variables of the habitat, and
HSI can be calculated using these variables. Habitats with a high HSI tend to
have a large number of species, while those with a low HSI have a small number
of species. Habitats with a high HSI have many species that migrate to nearby
habitats, simply by virtue of the large number of species that they host.
Migration of some species from one habitat to other habitat is known as
emigration process. When some species enter into one habitat from any other
outside habitat, it is known as immigration process. Habitats with a high HSI
have a low species immigration rate because they are already nearly saturated
with species. Therefore, high HSI habitats are more static in their species
distribution than low HSI habitats. By the same token, high HSI habitats have
a high emigration rate. Habitats with a low HSI have a high species immigration
rate because of their sparse populations. This immigration of new species to low
HSI habitats may raise the HSI of that habitat, because the suitability of a
habitat is proportional to its biological diversity. Here, Figure 1 illustrates a
model of species abundance in a single habitat. Let us consider the immigration
graph of Figure 1. The maximum possible immigration rate to the habitat is I,
which occurs when there are zero species in the habitat. If a habitat has less
number of species, then much larger amount of species from other habitat can
enter into that habitat, so immigration rate is higher at that time. As the
number of species increases, the habitat becomes more crowded, and fewer

Figure 1. Species model of a single habitat.
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species are able to successfully survive after immigration to the habitat, and the
immigration rate decreases. The largest possible number of species that the
habitat can support is Smax, at which point the immigration rate becomes zero,
because no more species can enter into that habitat after that species count.
Now consider the emigration graph. If there are no species in the habitat, then
there is no species in that habitat that can shift to other habitat, so the
emigration rate must be zero. As the number of species increases, the habitat
becomes more crowded, more species are able to leave the habitat to explore
other possible residences, and the emigration rate increases. The maximum
emigration rate is E, which occurs when number of species is Smax. The
equilibrium number of species is S0, at which point the immigration and
emigration rates are equal. In Figure 1, immigration and emigration lines,
graphically, have been shown as straight lines but, in general, they might be
more complicated curves. However, the simple model gives us a general
description of the process of immigration and emigration. In BBO algorithm,
calculation of emigration rate and immigration rate is important as these play
vital role to select habitats whose SIVs will undergo migration operation.

Mathematically, the concept of emigration and immigration can be repre-
sented by a probabilistic model. Let us consider the probability Ps that the
habitat contains exactly S species at t. Ps changes from time t to time
t þ Δt as follows (Simon 2008):

Ps t þ Δtð Þ ¼ Ps tð Þ 1� λs Δt � μsΔt
� �þ Ps�1λs�1 Δt þ Psþ1μsþ1Δt (3)

where λs and μs are the immigration and emigration rates when there are S
species in the habitat. This equation holds because in order to have S species
at time þ Δt, one of the following conditions must hold (Simon 2008):

(1) There were S species at time t, and no immigration or emigration
occurred between t and t þ Δt.

(2) There were S� 1 species at time t, and one species immigrated.
(3) There were Sþ 1 species at time t, and one species emigrated.

If time Δt is small enough so that the probability of more than one immi-
gration or emigration can be ignored, then taking the limit of Equation (3) as
Δt ! 0 gives the following equation (Simon 2008).

_Ps ¼
�ðλs þ μsÞ Ps þ μsþ1Psþ1 S ¼ 0
�ðλs þ μsÞ Ps þ λs�1 Ps�1 þ μsþ1Psþ1 1 � S � Smax � 1
�ðλs þ μsÞ Ps þ λs�1 Ps�1 S ¼ Smax

8<
: (4)

From the straight-line graph of Figure 1, the equation for emigration rate μk
and immigration rate λk for k number of species can be written as per the
following way (Simon 2008):
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μk ¼
Ek
n

(5)

λk ¼ I 1� k
n

� �
: (6)

When value of E ¼ I, then combining Equations (5) and (6)

λk þ μk ¼ E (7)

BBO

This section describes development of BBO technique and the different steps
involved therein.

BBO concept is based on the two major steps, e.g., migration and mutation
as discussed below.

Migration
In BBO algorithm, a population of candidate solution can be represented as
vectors of real numbers. Each real number in the array is considered as one
(SIV). Using this SIV, the fitness of each set of candidate solution, i.e., HSI value,
can be evaluated. In an optimization problem, high HSI solutions represent
better quality solution, and low HSI solutions represent an inferior solution. The
emigration and immigration rates of each solution are used to probabilistically
share information between habitats. With probability Pmod, known as habitat
modification probability, each solution can be modified based on other solu-
tions. According to BBO if a given solution Si is selected for modification, then
its immigration rate λ is used to probabilistically decide whether or not tomodify
each SIV in that solution. After selecting the SIV for modification, emigration
rates μ of other solutions are used to select which solutions among the habitat set
will migrate randomly chosen SIVs to the selected solution Si. In order to prevent
the best solutions from being corrupted by immigration process, some kind of
elitism is kept in BBO algorithm. Here, best habitat sets, i.e., those habitats whose
HSI are best, are kept as it is without migration operation after each iteration.
This operation is known as elitism operation (Simon 2008).

Mutation
It is well known that due to some natural calamities or other events, HSI of
natural habitat might get changed suddenly. In BBO, such an event is
represented by mutation of SIV and species count probabilities are used to
determine mutation rates. The probabilities of each species count can be
calculated using the differential equation of Equation (4). Each habitat
member has an associated probability, which indicates the likelihood that it
exists as a solution for a given problem. If the probability of a given solution
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is very low, then that solution is likely to mutate to some other solution.
Similarly if the probability of some other solution is high, then that solution
has very little chance to mutate. So, it can be said that very high HSI solution
and very low HSI solutions have less chance to create more improved SIV in
the later stage. But medium HSI solutions have better chance to create much
better solutions after mutation operation. Mutation rate of each set of solu-
tion can be calculated in terms of species count probability using the follow-
ing equation (Simon 2008):

m Sð Þ ¼ mmax
1� Ps
Pmax

� �
(8)

where mmax is a user-defined parameter and Pmax is the maximum Ps. This
mutation scheme tends to increase diversity among the habitats. Without this
modification, the highly probable solutions will tend to be more dominant in
the total habitat. This mutation approach makes both low and high HSI
solutions likely to mutate, which gives a chance of improving both types of
solutions in comparison to their earlier value. Few kind of elitism is kept in
mutation process to save the features of a solution, so if a solution becomes
inferior after mutation process, then previous solution (solution of that set
before mutation) can be reverted back to that place again if needed.

BBO algorithm
The BBO algorithm can be described in the following way.

Step 1) Initialize the BBO parameters like habitat modification probability
Pmod, mutation probability, maximum mutation rate mmax, max
immigration rate I, max emigration rate E, lower bound and upper
bound for immigration probability per gene, step size for numerical
integration dt, number of habitat N, number of SIV m, elitism para-
meter p which indicates the number of best habitats to be retained in
the habitat matrix as it is, from one generation to the next without
performingmigration operations on them, etc. Set maximum number
of iteration. Generate the SIVs of the given problem within their
feasible region using random number. A complete solution consisting
of SIVs is known as one habitat H. There are several numbers of
habitats to search the optimum result (Simon 2008).

Step 2) Suppose we are minimizing a function f x1; x2; x3ð Þ ¼ x1 � 2ð Þ2 þ
x2 � 3ð Þ2 þ x3 � 4:3ð Þ2 that has been formulated as a mixed inte-
ger programming problem. Initialize several numbers of habitats
depending upon the habitat size within feasible region. Each habi-
tat represents a potential solution to the given problem. So, total
habitat in matrix form is written in the following forms:
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H ¼

x11 x12 x13
x21 x22 x23
x31 x32 x33
..
. ..

. ..
.

xN1 xN2 xN3

2
666664

3
777775
:

Step 3) Calculate the HSI value for each habitat of the population set for
given emigration rate μ and immigration rate λ. For the function

f x1; x2; x3ð Þ ¼ x1 � 2ð Þ2 þ x2 � 3ð Þ2 þ x3 � 4:3ð Þ2, HSI of all N
SIV sets is calculated as per the following way:

HSI1 ¼ x11 � 2ð Þ2 þ x12 � 3ð Þ2 þ x13 � 4:3ð Þ2
HSI2 ¼ x21 � 2ð Þ2 þ x22 � 3ð Þ2 þ x23 � 4:3ð Þ2
HSI3 ¼ x31 � 2ð Þ2 þ x32 � 3ð Þ2 þ x33 � 4:3ð Þ2

..

.

HSIN ¼ xN1 � 2ð Þ2 þ xN2 � 3ð Þ2 þ xN3 � 4:3ð Þ2

Calculate the number of valid species out of all habitats using their
HSI values. Those habitats, whose fitness values, i.e., HSI values,
are finite, are considered as valid species S.

Step 4) Based on the optimum HSI value, elite habitats are identified.
Step 5) Probabilistically, immigration rate and emigration rate are used to

modify each non-elite habitat using migration operation. The prob-
ability that a habitatHi is modified is proportional to its immigration
rate λi and the probability that the source of the modification comes
from a habitat Hj is proportional to the emigration rate μj. Habitat

modification using migration operation can be described as Figure 2.
From this algorithm, we note that elitism can be implemented by
setting λ ¼ 0 for the best p habitats. After each habitat is modified,
its feasibility as a problem solution should be verified. If it does
not represent a feasible solution, then the above procedure is
ignored and the same procedure is performed again in order to
map it to the set of feasible solutions. After modification of each
non-elite habitat using migration operation, each HSI is recom-
puted (Bhattacharya and Chattopadhyay, 2010; Simon 2008).

Step 6) For each habitat, the species count probability is updated using
Equation (4). Mutation operation is performed on each non-elite
habitat and HSI value of each habitat is computed again. Figure 3
describes mutation operation.
As with habitat modification, elitism can be implemented by set-
ting the probability of mutation selection Pi to zero for the best p
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habitats. After each habitat is modified, its feasibility as a problem
solution should be verified. If it does not represent a feasible
solution, then the above step is ignored and the abovementioned
method is applied again in order to map it to the set of feasible
solutions (Bhattacharya and Chattopadhyay, 2010; Simon 2008).

Step 7) Go to step (3) for the next iteration. This loop can be terminated after
a predefined number of iterations (generations) have been found.

Finally, the values of calculated variables, respectively, are x1 ¼ 2; x2 ¼
3 and x3 ¼ 4:30: It is shown in Figure 4.

Figure 5 shows a pseudo code for BBO.

Figure 2. Habitat modification using migration operation.

Figure 3. Mutation operation.
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The GENCO’s maintenance model

The maintenance schedule determines periods when generating units in a
GENCO are to be taken off line for planned preventive maintenance over the
course of 1 year horizon (Marwali and Shahidehpour, 2000b). So that the loss
of revenue is minimized while system energy, reliability as well as a number
of other constraints are satisfied.

Objective function

Since the maintenance scheduling problem in a restructured power system
becomes a multi-goal optimization problem, new model has to be sought to
solve the maintenance schedule problem in restructured systems (Wang and
Handschin 1999). The main purpose of a GENCO is making money as much as
possible. As a matter of fact, the objective function is profit or the difference
between total costs, which is the sum of different types of costs (such as
maintenance cost of local transmission lines, maintenance cost and operation
cost of generating units) and the income deriving from selling energy, as well.
While we consider the income and also the costs in a 3-week period instead of
the whole year, obviously the difference (on the other hand the profit) will be
negative during this period of time, logically we use the term “loss of revenue”
instead of profit, so minimizing the loss of revenue is the goal.

Figure 4. The value of calculated variables.
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Constraints

Constraints may be categorized as coupling and decoupling constraints in time
domain. The first set of coupling, or maintenance constraints, require that the
units be overhauled regularly. This is necessary to keep their efficiency at a
reasonable level, reduce force outage rates and prolong the life of the units. This
procedure is incorporated periodicity by specifying min/max times that a
generating unit may run without maintenance. The required time for over-
hauling a unit is generally given; hence, the number of weeks that a unit will be
“down” is predetermined. It is assumed here that there is very little flexibility in
the manpower usage and a limited number of units may be serviced at a given
time. The available maintenance crew may categorize by location and respon-
sibility. The availability of the crew in each category will be specified in the
formulation (Marwali and Shahidehpour, 2000b). Network constraints in each
time period are considered as decoupling constraints. The transportation model
is adopted to represent system operation limits, peak load balance equation,
generating and line capacity limits.

Mathematical description

The GENCO’s maintenance scheduling problem can be formulated as
follows:

Figure 5. Pseudo code for biogeography-based optimization. Here, H indicates habitat, HSI is
fitness, SIV (suitability index variable) is a solution feature, λ denotes immigration rate and μ
denotes emigration rate.
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MinZ ¼
X
t

X
i;k

½Cit 1� xitð Þ þ Ckt �Nk � Nktð Þ þ citgit� � sptgitf g (9)

Subject to
Coupling constraints:

xit ¼ 1 for t � ei or t � li þ di
xit ¼ 0 for si � t � si þ di
xit 2 0; 1f g for ei � t � li
Nkt < �Nk for t � ek or t � lk þ dk
Nkt ¼ �Nk for sk � t � sk þ dk
Nkt 2 0; 1; . . . ; �Nkf g for ek � t � lk

(10)

crew availability
resource availability
seasonal limitations
desirable schedule

(11)

Decoupling constraints:

Sf þ g þ r ¼ d"t (12)

g � �g � x"t (13)

r � d"t (14)

fj j � �f � N "t (15)

where
Ckt : transmission maintenance cost/line in line k at time t.
Cit : generation maintenance cost for unit i at time t.
cit : generation cost for unit i at time t.
Nkt : number of circuits available in line k at time t, in the vector form is N.
xit : unit maintenance status, 0 if unit is offline for maintenance.
�Nk : maximum number of circuits in line k.
si : time period in which maintenance of generating unit i starts.
spt : forecast of market price at time t.
ei : earliest period for maintenance of generating unit i to begin.
li : latest period for maintenance of generating unit i to begin.
di : duration of maintenance for generating unit i.
sk : time period in which maintenance of line k starts.
ek : earliest period for maintenance of line k to begin.
lk : latest period for maintenance of line k to begin.
dk : duration of maintenance for line k.
r : vector of dummy generators, which corresponds to energy not served

at time period t.
�f : maximum generation capacity in vector form.
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f : active power flow in vector form.
�g : maximum generation capacity in vector form.
g : vector of, git, power generating for each unit i at time t.
git : power generation of unit i at time t.
d : vector of demand in every bus at time t.
S : node–branch incidence matrix.
Pmax
i : maximum power generation of unit i.

Pmin
i : minimum power generation of unit i.

The unknown variables xit and Nkt in the all abovementioned equations are
restricted to integer values; on the other hand, git and f have continuous
values. The objective of Equation (9) is to minimize the loss of revenue over
the operational planning period. The first term of the objective function
Equation (9) is the maintenance cost of generators, the second is transmis-
sion line maintenance cost, the third is the energy production cost and the
fourth is the income from selling produced energy over the planning period.

Constraints Equation (10) represent the maintenance window stated in terms
of the start of maintenance variables si; skð Þ. The unit and the line must be
available both before their earliest period of maintenance ei; ekð Þ and their latest
period of maintenance, e.g., li þ di; lk þ dkð Þ. Set of constraints Equation (11)
consists of crew and resource availability, seasonal limitation and desirable
schedule. The seasonal limitation can be incorporated into ei and li values of
constraint Equation (10). If we consider for example that lines 1, 2 and 3 are to
be maintained simultaneously, the set of constraints can be formed as follows:

N1t þ N2t þ N3t ¼ 6 or N1t þ N2t þ N3t ¼ 0

If the GENCOs have limited crew and resources available for maintenance, it
assumed that in each time interval (e.g., 1 week) we can put only one generat-
ing unit and one local transmission line off-line simultaneously for yearly
maintenance program. Constraints Equations (12)–(15) represent peak load
balance and other operational constraints such as generation and transmission
capacity limits (Marwali and Shahidehpour, 1998a, 1999; Mohammadi Tabari,
Pirmoradian, and Hassanpour 2008b; Shahidehpour and Marwali 2000c).

Case study

This paper introduces a GENCO with three generating units and three
double circuit transmission lines. For convenience, in this study, all lines
are assumed to be perfectly reliable. The specifications of GENCO’s genera-
tors, transmission lines and load are given in Tables 1–3. The problem is
defined as follows: the GENCO wants to perform maintenance on one
generator and one transmission line in each step of the study period due to
limited number of crew and resources and also the low market price of
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electricity on that specific 3-week study period, which consists of three
1 week time interval. The main factor for scheduling in a competitive
environment is the amount of electricity that a GENCO sell. The market
price forecast, for the whole 3-week planning period, is shown in Table 4
(Mohammadi Tabari, Pirmoradian, and Hassanpour 2008b).

Putting the above data in the formulation of previous section, we will
come to the following mathematical model:

Objective function:

Min Z ¼
X3
t¼1

X3
i¼1

ðCit 1� xitð Þ þ citgit � sp gitÞ þ
X3
t¼1

X3
k¼1

Cik 2� Nikð Þ

Subject to

X3
t¼1

xit ¼ 2i ¼ 1; 2; 3

X3
i¼1

xit ¼ 2t ¼ 1; 2; 3

X3
t¼1

Nkt ¼ 4k ¼ 1; 2; 3

X3
k¼1

Nkt ¼ 4t ¼ 1; 2; 3

0 � Nkt � 2k ¼ 1; 2; 3t ¼ 1; 2; 3

xit ¼ 0; 1i ¼ 1; 2; 3t ¼ 1; 2; 3

Table 1. GENCO’s generators specification.
Unit No. Min. capacity, Pmini (p.u.) Max. capacity, Pmaxi (p.u.) Operation cost ($) Maintenance cost ($/p.u.)

1 0.5 2.5 10g1t 300
2 0.6 2.5 10g2t 200
3 0.6 2.5 10g3t 100

Table 2. GENCO’s transmission lines specification.
Line No. Buses of line No. of circuits Maintenance cost ($/line) Max. capacity/circuit (p.u.)

1 1–2 2 100 0.5
2 2–3 2 200 1
3 1–3 2 300 0.5

Table 3. Load specification.
Bus No. Load (p.u.) Generator

1 1 g1
2 3 g2
3 1 g3
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X3
i¼1

rit � 0:5t ¼ 1; 2; 3

Pmin
i xit � git � Pmax

i xiti ¼ 1; 2; 3t ¼ 1; 2; 3

� f1t � f3t þ g1tx1t þ r1t ¼ 1t ¼ 1; 2; 3

� f2t þ f1t þ g2tx2t þ r2t ¼ 3t ¼ 1; 2; 3

þ f3t þ f2t þ g3tx3t þ r3t ¼ 1t ¼ 1; 2; 3

� 0:5Nkt � fkt � 0:5Nktk ¼ 1; 2; 3t ¼ 1; 2; 3

Numerical results

In order to verify BBO can supply an optimal unit maintenance schedule, a
GENCO that must be maintained during a 3-week period was adopted as the
test system. Programming commands used in this simulation are taken from
MATLAB. In Equation (2), αi and βj are 10,000. The obtained results are
shown in Table 5. This table shows that in the first week, the third generator
and the second line should be maintained. In the second week, the first
generator and the first line is put off line. Finally, the second unit and the
third line must be serviced during the third week.

Also, the minimum value of loss of revenue is $1200. Figure 6 shows the
convergence of BBO.

Compared with branch-and-bound optimization method that calculates Z
in 1200 value (Mohammadi Tabari, Pirmoradian, and Hassanpour 2008b),
BBO is more accurate and also has the greater velocity.

Conclusion

This paper introduces BBO to optimize the unit maintenance scheduling of
GENCOs in restructured power systems. A GENCO’s maintenance schedul-
ing problem (as a mixed integer programming problem) has been solved.
BBO gives optimal maintenance schedule. All the constraints are satisfied.
The obtained result using BBO in Table 5 has been compared with branch-
and-bound optimization method. The result reveals that BBO outperforms
this classic method in terms of reaching an effective solution and fast
convergence. Also, the proposed method has a high degree of flexibility.

Table 4. The market price forecast.
Week No. Average market price forecast ($)

1 55git
2 50git
3 45git
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Therefore, it is easier to implement. Finally, this paper demonstrates with
clarity successful application of BBO to GENCOs’ maintenance scheduling.
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