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Introduction: As the population skews toward older age, elucidating mechanisms

underlying human brain aging becomes imperative. Structural MRI has facilitated

non-invasive investigation of lifespan brain morphology changes, yet this

domain remains uncharacterized in rodents despite increasing use as models of

disordered human brain aging.

Methods: Young (2m, n = 10), middle-age (10m, n = 10) and old (22m, n = 9)

mice were utilized for maturational (young vs. middle-age) and aging-related

(middle-age vs. old mice) comparisons. Regional brain volume was averaged

across hemispheres and reduced to 32 brain regions. Pairwise group differences

in regional volume were tested using general linear models, with total brain

volume as a covariate. Sample-wide associations between regional brain volume

and Y-maze performance were assessed using logistic regression, residualized

for total brain volume. Both analyses corrected for multiple comparisons.

Structural covariance networks were generated using the R package “igraph.”

Group differences in network centrality (degree), integration (mean distance), and

segregation (transitivity, modularity) were tested across network densities (5–

40%), using 5,000 (1,000 for degree) permutations with significance criteria of

p < 0.05 at ≥5 consecutive density thresholds.

Results: Widespread significant maturational changes in volume occurred in 18

brain regions, including considerable loss in isocortex regions and increases

in brainstem regions and white matter tracts. The aging-related comparison

yielded 6 significant changes in brain volume, including further loss in isocortex

regions and increases in white matter tracts. No significant volume changes were

observed across either comparison for subcortical regions. Additionally, smaller

volume of the anterior cingulate area (χ2 = 2.325, pBH = 0.044) and larger

volume of the hippocampal formation (χ2 = −2.180, pBH = 0.044) were associated

with poorer cognitive performance. Maturational network comparisons yielded

significant degree changes in 9 regions, but no aging-related changes, aligning

with network stabilization trends in humans. Maturational decline in modularity

occurred (24–29% density), mirroring human trends of decreased segregation in

young adulthood, while mean distance and transitivity remained stable.
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Conclusion/Implications: These findings offer a foundational account of age

effects on brain volume, structural brain networks, and working memory in

mice, informing future work in facilitating translation between rodent models and

human brain aging.

KEYWORDS

mouse model, aging, brain volume changes, MRI, Structural covariance network (SCN),
cognition, working memory, lifespan

1. Introduction

As the world population skews sharply toward older age, with
21.1% projected to be 60 years or older by 2050, the risk of
age-related physical and cognitive decline is expected to increase
an already widespread societal burden (Chatterji et al., 2015).
Understanding lifespan changes in brain maturation and aging is
crucial for uncovering etiology driving the aging process and the
emergence of age-related diseases, such as dementia (Hou et al.,
2019).

Human structural magnetic resonance imaging (MRI) studies
have begun to map trajectories of lifelong structural brain change.
In humans, overall brain volume is observed to increase before
a mid-childhood peak at 5.9 years, followed by a near-linear
decrease across the lifespan (Bethlehem et al., 2022). On a regional
level, maturational growth peaks earliest in primary sensory motor
areas and latest in higher-order association areas (Giedd and
Rapoport, 2010). Specifically, regional gray matter loss occurs most
consistently in the cerebral cortex, with drastic loss in prefrontal
regions accompanied by less extensive loss in parietal and temporal
association cortices (Raz, 1997; Tisserand et al., 2002; Resnick et al.,
2003). Moderately consistent findings of aging-related volume
loss are reported for the insula, cerebellum, basal ganglia, and
thalamus (Good et al., 2001; Alexander et al., 2012). However,
findings of aging-related atrophy in limbic and prelimbic regions
are more conflicting, particularly in the hippocampus, amygdala,
and cingulate gyrus (Raz, 1997; Jernigan et al., 2001; Zheng et al.,
2019). Compared to gray matter, white matter volume matures
gradually, peaking at 50 years of age, before drastically declining
after 60 years of age (Jernigan et al., 2001; Liu et al., 2016). In turn,
age-related individual differences in regional gray and white matter
properties have been mapped onto differences in cognition and may
contribute to observed patterns of age-dependent cognitive decline
(Raz and Rodrigue, 2006; Oschwald et al., 2019).

While structural MRI has facilitated progress in characterizing
lifespan brain volume changes in humans, further leveraging these
insights to study molecular mechanisms of aging is challenging
due to the invasive nature of molecular brain research. The use
of rodent models allows for more direct experimentation than
human brain research, including transgenic and gene knock-out
models to simulate pathology, drug trials, and more invasive
biological interventions (Nadon, 2006). Moreover, the significantly
shorter lifecycles in rodent models facilitate feasible lifespan
and generational research (Folgueras et al., 2018). Ultimately,
models are as useful as their ability to approximate healthy and
pathological states in the human brain. However, while preclinical

models are being increasingly implemented for Alzheimer’s disease,
Parkinson’s disease, frontotemporal dementia, and Huntington’s
disease (Ellenbroek and Youn, 2016; Dawson et al., 2018),
normal lifespan changes in brain volume remain incompletely
characterized in rodent models.

This incomplete characterization reflects, in part, evolving
methodology such as specialized small-rodent scanners and non-
standardized brain segmentation methods (Denic et al., 2011;
Sawiak et al., 2013), that has contributed to a lag in the use
of structural MRI in preclinical rodent models compared to its
widespread use in human research (Feo and Giove, 2019). As
a result, there are few lifespan brain volume studies in rodents.
Whole-brain volumetric findings suggest that gray matter volume
increases in rodents before plateauing at 2 months (Mengler et al.,
2014). A recent study describes prominent regional volume loss in
the isocortex (i.e., often referred to as neocortex in humans), most
notably in the prefrontal cortex and temporal association areas, as
well as the insula and perirhinal area. Further loss occurred in the
cerebellum, while increases in volume occurred in somatosensory
areas, thalamus, midbrain, septal nuclei, and specific hippocampal
regions (Alexander et al., 2020). The sparse literature on lifespan
brain volume changes in rodents poses a gap in the determination
of their suitability as a model of healthy structural brain aging.

In this context, specific brain regions warrant particular
attention due to their selective age-sensitivity and relevance to
age-related cognitive phenotypes. These regions of interest (ROIs)
include the anterior cingulate cortex (ACC), hippocampus, and
orbitofrontal cortex (OFC). In humans, the ACC connects to both
prefrontal and limbic regions, integrating emotional and cognitive
functions, including attention, decision making, fear response, and
memory (Bush et al., 2000). In rodents, the homologous anterior
cingulate area subserves similar functions to those of the ACC
(Frankland et al., 2004; Hosking et al., 2014; Zhang et al., 2014),
comprising one of four subregions of the medial prefrontal cortex
(Heidbreder and Groenewegen, 2003). Normal aging is largely
associated with volume loss in the ACC (Good et al., 2001; Bergfield
et al., 2010), although preservation has also been reported (Raz,
1997). Further evidence of aging-dependent changes in the ACC
includes reductions in spine density and dendritic tree extent
(Markham and Juraska, 2002), and decreases in glucose uptake and
metabolism (Pardo et al., 2007).

The hippocampus is another region of particular relevance due
to its sensitivity to aging-related changes. By integrating sensory,
spatial, and temporal information, it contributes to memory
formation, learning, and spatial navigation (Eichenbaum, 1999;
Maguire et al., 1999). In humans, drastic hippocampal volume loss

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1195748
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1195748 July 1, 2023 Time: 14:44 # 3

Clifford et al. 10.3389/fnagi.2023.1195748

is observed in aging (Jernigan et al., 2001; Zheng et al., 2019),
however, conflicting results have also been reported (Sullivan, 1995;
Good et al., 2001). Furthermore, this region displays a unique
pattern of continual neurogenesis and increase in brain volume
into adulthood in both humans and rodents (Diamond et al., 1975;
Sullivan, 1995; Sullivan et al., 2006), while reduced hippocampal
neurogenesis in late life has been associated with decreased volume
and memory performance (Kuhn et al., 1996; Driscoll et al., 2006;
Bettio et al., 2017).

Lastly, the OFC in humans is a prefrontal cortical region that
acts as a link between sensory integration, autonomic reactions,
learning, and decision making for emotional and reward-related
behaviors (Kringelbach, 2005). This age-sensitive region is of
interest due to evidence of decreasing volume across aging (Convit
et al., 2001; Tisserand et al., 2002). In rodents, the orbital area is
homologous to a human agranular section of the OFC, serving
similar function (Öngür and Price, 2000; Izquierdo, 2017). Better
understanding the nature of age-dependent structural changes
in these regions is likely to provide insight into age-dependent
cognitive changes.

Network-based approaches to modeling brain structure
can complement univariate analyses of regional brain volume
to uncover mechanisms underlying normal aging. Structural
covariance networks (SCNs) are comprised of nodes (brain
regions) connected by edges which represent the statistical
correlation between properties of adjacent nodes (Bullmore and
Sporns, 2009). As such, they reflect synchronized changes in
morphology (volume, cortical thickness) between brain regions
(Alexander-Bloch et al., 2013), thought to be driven by mutually
trophic influences (Ferrer et al., 1995; Pezawas et al., 2004) and
experience-driven plasticity (Mechelli, 2005). SCNs are heritable
(Mechelli, 2005), occur at the individual and population level
(Tijms et al., 2012; Alexander-Bloch et al., 2013), and partially map
on to structural and functional connectivity (Alexander-Bloch et al.,
2013). SCNs also display consistent lifespan trajectories, reflecting
coordinated neurodevelopmental changes across maturation and
aging (Fan et al., 2011; Khundrakpam et al., 2013; Cao et al.,
2016). Furthermore, perturbations to typical composition of SCNs
have been observed in neurodegenerative diseases and psychiatric
illnesses (Alexander-Bloch et al., 2013; Prasad et al., 2022).

While SCN analysis could provide additional insight into
age-related changes in brain structure and organization, few
studies have considered lifespan SCN trajectories in rodents.
Existing literature has employed scaled sub-profile modeling SCN
methods (Alexander et al., 2020), but none, to our knowledge,
have leveraged whole-brain SCN and graph theoretical methods.
The latter can be used to characterize different aspects of SCN
topology, from which inferences regarding brain structure and
function can be drawn (Bullmore and Sporns, 2009). Topological
measures broadly index network (1) node centrality, identifying
the “hubness” of highly connected and influential nodes; (2)
integration, capturing the capacity for efficient network-wide
communication and information processing; and (3) segregation,
quantifying the presence of densely interconnected and clustered
nodes facilitating local or specialized information processing
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010).

In the present study, we aim to use structural MRI and graph
theoretical methods to provide a comprehensive characterization
of lifespan brain volume changes in mice. By comparing young

mice to middle-aged mice, and middle-aged mice to old mice,
we distinguish between maturational and aging-related differences,
respectively, in regional brain volume for 32 brain regions.
Particular consideration is given to the three aforementioned
a priori ROIs, for which there is evidence of age-sensitivity and
relevance to age-related cognitive phenotypes (anterior cingulate
area, hippocampal formation, and orbital area). We then map
these regional brain volume changes to cognitive outcomes by
establishing associations with working memory performance on
the Y-maze task. Lastly, we further explore regional volumetric
changes by analyzing maturational and aging-related differences in
SCNs, examining network topology across the mouse lifespan.

2. Materials and methods

2.1. Animals

Two months-old (young), 10 months-old (middle-age) and
22 months-old (old) male C57BL/6 mice (n = 10/group, Charles
River Laboratories, Senneville, Quebec, Canada) were housed
under a 12/12-h light/dark cycle (7am–7pm light phase) at constant
temperature (20–23◦C) with free access to food and water. One
mouse in the 22 months-old animal group was excluded from
the study for developing cataract signs before behavioral testing.
Testing was performed by an experimenter blinded to the animal
group during the animal’s light cycle phase. Animal use and testing
procedures were conducted in accordance with the Canadian
Council for Animal Care with approval from the institutional
animal care committee.

2.2. Behavioral testing

2.2.1. Y-maze
Testing was performed as in Prevot et al. (2019, 2021). The

Y-maze was chosen in preference over other working memory tasks
(e.g., Morris water maze or radial arm maze) as it is relatively
less susceptible to confounding factors related to aging, such as
weight, fatigue, and mobility differences (Matzel et al., 2008). The
Y-maze apparatus consists of 3 identical black PVC arms (26 cm
length × 8 cm width × 13 cm height) in the shape of a Y; each
arm has a sliding door. Distal cues of different shape, form and
color were placed on the walls around the room. Mice were allowed
to freely explore the apparatus for 10 min on 2 consecutive days
(habituation stage). The next day, mice performed a training session
consisting of seven consecutive trials. Each trial began with placing
the animal in the starting arm for 5 s, prior to the door of y-maze
arm opening, allowing the animal to freely choose between the 2
goal arms, and choices were recorded. Upon entering the arm, the
door was closed for a 30 s period (inter-trial interval or ITI) after
which the animal was returned to the starting arm for the next trial
(training stage). The following day, mice were subjected to a similar
procedure as the training session, with the exception that the ITI
being lengthened to 60 s ITI (testing stage). The mean percent
alternation rate (number of alternation/number of trials × 100) was
calculated as an index of working memory. ANOVA was performed
to determine differences between groups, followed by the Wald test
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in a logistic regression model, to account for the non-normality
of the data distribution and the non-continuous nature of the
proportion alternation scores.

2.2.2. Locomotor activity
During the light cycle, locomotor activity of each mouse was

measured for 1 h in an observational cage (30 cm × 30 cm) with
bedding on the floor (Noldus Phenotyper R©, Leesburg, VA, USA).
Using Noldus EthoVision 10 tracking software, mice total distance
traveled within the cage was analyzed.

2.3. MRI data collection and
pre-processing

Twenty-four h after the last behavioral testing, animals were
anesthetized and perfused with 4% paraformaldehyde containing
2 mM of ProHance (gadoteridol). Brains were then prepared and
scanning was performed as described in Nikolova et al. (2018).
In this case, however, we extracted brain volumes from a total
of 280 regions (instead of 159, as in Wheeler et al., 2015),
excluding ventricles. This parcellation method was adapted from
previous rodent MRI studies (Dorr et al., 2008; Richards et al.,
2011; Ullmann et al., 2013; Steadman et al., 2014). Deformation-
based morphometry was used to derive absolute brain volumes (in
mm3). For all MRI analyses, ROI volumes were averaged across
hemispheres in order to minimize multiple testing burden.

2.4. Data reduction

MRI-derived volumes were extracted from 280 regions. To
reduce the number of comparisons, these regions were combined
according to their positions within a hierarchical tree, ultimately
yielding 32 regions of interest (ROIs) (Refer to Supplementary
Material 1). Of these ROIs, 5 are white matter tracts (cerebellar-
related fiber tracts, cranial nerves, extrapyramidal fiber system,
lateral forebrain bundle system, and medial forebrain bundle
system) and 27 are gray matter divisions. The latter includes
5 brainstem areas (hypothalamus, medulla, midbrain, pons, and
thalamus); 2 cerebral nuclei (pallidum, striatum); 18 cerebral
cortical areas, including the cortical subplate, hippocampal
formation, olfactory areas, and 15 isocortical areas (agranular
insular area, anterior cingulate area, auditory areas, ectorhinal area,
frontal pole, infralimbic area, orbital area, perirhinal area, posterior
parietal association areas, prelimbic area, retrosplenial area,
somatomotor areas, somatosensory areas, temporal association
areas, visual areas); and 2 cerebellar divisions (cerebellar cortex,
cerebellar nuclei).

2.5. Volumetric analyses

2.5.1. A priori ROI volumetric effects of age
Preliminary statistical analyses focused on the anterior

cingulate area, hippocampal formation, and orbital area. For each
ROI, we performed the following analyses. First, we tested pairwise
group differences (young vs. middle-age, middle-age vs. old) in

volume using separate general linear models including total brain
volume as a covariate. Then, we tested the sample-wide associations
of regional volume, residualized for total brain volume, with
working memory performance. Working memory performance
was evaluated using the Y maze task, and logistic regression was
employed with volume measurement as a continuous independent
variable and percent alteration expressed as a proportion score,
bound between the values of 0 and 1, as the dependent variable
(Long, 1997). To account for multiple comparisons, raw p-values
from each analysis (n = 6, 3, respectively) were adjusted using the
Bonferroni-Holm method (Holm, 1979), a correction commonly
used in MRI analysis (Kerr et al., 2022; Straub et al., 2023).
We opted for this relatively conservative correction method to
ensure greater specificity of our findings. Notably, however, the
Bonferroni-Holm method is less conservative than the Bonferroni
correction, offering similar protection against Type I error coupled
with reduced likelihood of Type II error (Eichstaedt et al., 2013).

2.5.2. Whole-brain volumetric effects of age
We repeated the aforementioned analyses brain-wide,

correcting for multiple testing in all 32 ROIs using the
Bonferroni-Holm method.

2.6. Structural covariance network
analyses

2.6.1. A priori degree centrality analyses
We used the R package “igraph” to generate and compare age

group-specific structural covariance matrices indexing correlations
of volume between brain regions. Regional volumes were first
adjusted for total brain volume, and all negative correlations
were removed [to align with previous work (Nikolova et al.,
2018; Misquitta et al., 2021)], resulting in group-specific structural
covariance matrices that were unweighted and unsigned. For
each group, a set of structural covariance networks was then
defined by thresholding the covariance matrices using a range of
density thresholds (0.05–0.40), indexing the top 5–40% strongest
connections in sequential increments of 1%. We then tested
pairwise group differences in degree centrality, a node’s level of
interconnectedness within the network (Bullmore and Sporns,
2009), for each of the 3 a priori ROIs (anterior cingulate area,
hippocampal formation, and orbital area) across each of the above-
mentioned age group-specific structural covariance networks.
For statistical analysis, permutation testing was performed at
each density threshold (n = 5,000 permutations), yielding null
distributions against which empirical two-tailed p-values were
computed. Significance was defined as p < 0.05 at 5 or more
consecutive density thresholds.

2.6.2. Brain-wide degree centrality analyses
We repeated the degree centrality analyses for all 32 brain

regions. Permutation testing was performed at density thresholds
using n = 1,000 permutations.

2.6.3. Global structural covariance network
analyses

In addition, we conducted pairwise group comparisons
(young vs. middle-age, middle-age vs. old) of modularity and
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transitivity, network segregation measures indexing densely
internally connected sub-graphs within the network, and the
tendency of nodes to form clusters, respectively; and mean
distance, the average length of shortest paths between nodes,
reflecting overall network efficiency (Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010). Permutation testing was performed
across a range of density thresholds (0.05–0.40), using n = 5,000
permutations. To further explore group differences in network
modularity, a Walktrap community detection algorithm from
the “igraph” package was used to identify densely connected
sub-graphs within age-group specific networks. For each age
group, the most prominent provincial hubs and connector hubs
were identified in communities by calculating both the within-
community degree z-score (the number of connections a given
node has to other nodes within the same community) and the
participation coefficient (the distribution of a node’s connections
to other communities in the network) of nodes, as outlined in
Guimerà et al. (2005) and adapted from Shizuka (2019). Provincial
hubs drive exchange and integration of information within a single
segregated community. As such, they are defined by a high within-
community degree z-score and a low participation coefficient.
In contrast, connector hubs facilitate sharing and integration of
information between otherwise segregated communities and are
therefore defined by both a high within-community degree z-score
and a high participation coefficient (Sporns, 2016).

3. Results

3.1. Cognitive performance on Y-maze
task and brain volume

Although old mice showed average percent alternations close
to 50% chance compared to that of 70% in young animals, we
found no significant difference in the percent of spontaneous
alternation between young, middle-age, or old animal groups
(ANOVA F2,26 = 1.96, p = 0.16, Figure 1A). Follow up analysis
using the Wald test in a logistic regression model similarly
found no significant difference in proportion of alternation
between age groups (χ2 = 4.7, p = 0.095). We did not detect
any statistical difference between groups in distance traveled in
the locomotor activity test (F1,26 = 2.240, p = 0.117; Young:
6,311cm ± 133 cm; Middle-age: 8,437 cm ± 795cm; Old:
7,215 cm ± 1,141 cm). In the absence of between-group differences
in cognitive performance, we then examined potential associations
between working memory measured in the Y-maze test and brain
volume of our 3 a priori ROIs and brain-wide (i.e., across all
32 regions) in the full sample. Independent of age group, better
cognitive performance was associated with greater volume of the
anterior cingulate area (χ2 = 2.325, pBH = 0.044, Figure 1B)
and smaller volume of the hippocampal formation (χ2 = −2.180,
pBH = 0.044, Figure 1C), while no association emerged with volume
of the orbital area (χ2 = 0.855, pBH = 0.393). Significant brain-
behavior associations are depicted in Figure 1, and corresponding
test statistics are summarized in Table 1. At the whole-brain
level, no association between Y-maze performance and regional
volume survived correction for multiple comparisons. However,
we identified several associations, wherein a “younger” brain

phenotype was associated with better cognitive performance,
regardless of chronological age (i.e., across age groups). Specifically,
better cognitive performance was associated with larger volume of
the agranular insular area (χ2 = 2.256, p = 0.024) and ectorhinal
area (χ2 = 2.646, p = 0.008), both of which were larger in
younger relative to middle-aged mice. Conversely, better cognitive
performance was also associated with lower volume of the medial
forebrain bundle system (χ2 = −1.968, p = 0.049), which was larger
in older age.

3.2. Volumetric changes across the
lifespan

3.2.1. A priori ROI volumetric effects of age
We detected significant main effects of age on regional volume

of the anterior cingulate area and orbital area, but not of the
hippocampal formation. Specifically, we found a maturational
decrease in volume in the anterior cingulate area, which was smaller
in middle-aged mice than in young mice (t = −4.898, pBH = 0.001)
(Figure 2A), but did not differ between middle-aged and old mice.
We observed a different trajectory of volume loss in the orbital area,
where volume was significantly lower in old mice than in middle-
aged mice (t = −2.859, pBH = 0.038; Figure 2B), but did not differ
between young and middle-aged mice, indicating aging-related
volume loss. Results of all pairwise comparisons are summarized
in Table 2.

3.2.2. Whole-brain volumetric effects of age
We found significant group differences in regional volume of

24 of 32 regions tested, including some of the a priori ROIs, as
mentioned above (Figures 2A, B). In most of these regions (18/24),
volume differed significantly between young mice and middle-
aged mice, indicating a maturational effect. The maturational
effects were characterized by increases in volume (i.e., middle-
aged > young) and decreases in volume (i.e., middle-aged < young)
in a roughly equivalent number of regions. Maturational increases
in volume (t = 2.611–6.837, pBH ≤ 0.050) were observed in ten
regions, including the cerebellar nuclei, pallidum, most of the
brainstem areas (hypothalamus, medulla, midbrain, pons), and
most of the white matter tracts (cerebellum-related fiber tracts,
cranial nerves, lateral forebrain bundle system, medial forebrain
bundle system) (Figure 2A). Maturational decreases in volume
(t = 2.674–4.898, pBH ≤ 0.050) were observed in 10 regions,
including the cerebellar cortex and 7 of 15 isocortical areas: anterior
cingulate area, auditory areas, prelimbic area, somatosensory
areas, somatomotor areas, temporal association areas, visual areas
(Figure 2A).

Aging-related (i.e., middle-aged < old) increases in volume
were observed in the lateral forebrain bundle system (t = 3.275,
pBH = 0.020) and medial forebrain bundle system (t = 3.177,
pBH = 0.022), white matter tracts in which we also found
maturational increases in volume. Aging-related decreases (i.e.,
middle-aged > old) in volume were observed in two distinct
isocortical areas, the ectorhinal cortex (t = −3.199, pBH = 0.022)
and the orbital area (t = −2.859, pBH = 0.038) (Figure 2B). Results
of all pairwise comparisons are summarized in Table 2.
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FIGURE 1

Significant associations between brain volume and working memory performance. Percentage of correct alterations in the Y-maze task are depicted
for the young, middle-age and old mice, with error bars representing standard error of the mean (SEM) (A). Greater volume of the anterior cingulate
area was associated with better working memory performance on the Y-maze task (B). Smaller volume of the hippocampal formation was
associated with better working memory performance on the Y-maze task (C). Associations survived correction for multiple comparisons across
these a priori regions (p-value pictured) but not across brain-wide regions.

3.3. Structural covariance network
adaptations

3.3.1. A priori ROI degree centrality analyses
Among the 3 a priori ROIs, we found significant maturational

group differences in regional degree centrality of the anterior
cingulate area and hippocampal formation, but not of the orbital
area (Figures 3A-C). Degree centrality in the anterior cingulate area
was significantly lower in middle-aged mice than in young mice
(23–40% density) indicating a maturational decrease in regional
connectivity (Figures 3A, 4A-C). Conversely, degree centrality in
the hippocampal formation was significantly higher in middle-aged
mice than in young mice (8–16% density) indicating a maturational
increase in regional connectivity (Figures 3B, 4D-F). In contrast,
no significant degree centrality differences in a priori regions were
detected in the aging-related comparisons (Figures 3D-F). Results
of all pairwise comparisons are summarized in Supplementary
Table 1.

3.3.2. Brain-wide degree centrality analyses
We identified group differences in degree centrality of 9

of 32 regions tested. In all of these regions, degree differed
significantly between young mice and middle-aged mice, indicating
maturational network connectivity changes. In addition to the
above-mentioned maturational differences in degree centrality of
the anterior cingulate area (decrease) and hippocampal formation
(increase), we also detected significant maturational decreases in
3 additional isocortical regions (auditory areas, ectorhinal area,
somatomotor areas) and significant maturational increases in 4
regions (cerebellar nuclei, cerebellum-related fiber tracts, cortical
subplate, midbrain) across partially overlapping density thresholds

(Figures 5A-G). No significant differences in regional degree were
found between the middle-aged and old mice.

3.3.3. Global structural covariance network
analyses

We detected a significant maturational decrease (i.e., middle-
age < young) in global network modularity (density 24–29%)
(Figure 6A), but no significant aging-related differences therein
(Figure 6B). In addition, we did not detect any significant
maturational or aging-related differences in global network
transitivity or mean distance measures. Results of all pairwise
comparisons are summarized in Supplementary Table 2.

Network community modules generated by the Walktrap
community detection algorithm revealed densely interconnected
sub-graphs in the young, middle-age, and old networks
(Figures 7A-C). Communities in the young network had
densely connected within-community edges (black lines) and few
inter-community connections (red lines), while the middle-age
and old network communities had progressively fewer within-
community connections and more inter-community connections.
In the young mice network, the most prominent provincial hubs of
their respective communities were the frontal pole, extrapyramidal
fiber system, and olfactory areas, while the most prominent
connector hubs were the ectorhinal area, temporal association
areas. Moreover, in the middle-aged network, the frontal pole,
posterior parietal association areas, hypothalamus, pallidum, and
lateral forebrain bundle system were identified as provincial hubs,
and the temporal association areas, cerebellar nuclei, and pons
were identified as connector hubs. Lastly, in the old mice network,
the midbrain was identified as the only provincial hub, while the
pallidum, prelimbic area, agranular insular areas, and hippocampal
formation were identified as connector hubs.
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TABLE 1 Sample-wide associations between volume and working
memory performance.

χ 2 pBH

A priori regions

Hippocampal formation −2.180 0.044

Anterior cingulate area 2.325 0.044

Orbital area 0.855 0.393

Brain-wide regions

Brainstem – –

Hypothalamus −0.517 0.645

Medulla −1.835 0.243

Midbrain −1.822 0.243

Pons −1.475 0.299

Thalamus 0.603 0.616

Cerebellum – –

Cerebellar cortex 1.418 0.312

Cerebellar nuclei −1.168 0.616

Cerebral cortex – –

Cortical sub-plate 0.599 0.616

Hippocampal formation −2.180 0.234

Olfactory areas 0.885 0.523

Cerebral isocortex – –

Agranular insular area 2.256 0.234

Anterior cingulate area 2.235 0.234

Auditory areas 1.348 0.316

Ectorhinal area 2.646 0.234

Frontal pole −0.586 0.616

Infralimbic area 0.466 0.662

Orbital area 0.855 0.523

Perirhinal area 1.243 0.342

Posterior parietal association
areas

0.184 0.854

Prelimbic area 0.617 0.616

Retrosplenial area 0.867 0.523

Somatomotor areas 1.359 0.316

Somatosensory areas 1.311 0.320

Temporal association areas 1.670 0.302

Visual areas 0.608 0.616

Cerebral nuclei – –

Pallidum −1.418 0.299

Striatum 1.837 0.243

White matter tracts – –

Cerebellum related fiber tracts −1.625 0.278

Cranial nerves −1.532 0.299

Extrapyramidal fiber system −1.163 0.373

Lateral forebrain bundle system −1.941 0.243

Medial forebrain bundle system −1.968 0.243

Sample-wide associations between regional volume, residualized for total brain volume, and
working memory performance, indexed as percent correct entries on the Y-maze task. BH,
Bonferroni-Holm. Bold values indicate that these values were statistically significant.

4. Discussion

Leveraging structural neuroimaging data in young, middle-
aged, and old mice, we provide a comprehensive characterization
of regional volume and SCN changes across the lifespan, and map
them onto working memory performance in the Y-maze paradigm.
We observed robust and widespread maturational changes in
brain volume, including notable volume loss in isocortical regions
accompanied by volume gain in white matter tracts and the
brainstem. Aging-related volume changes were more discreet,
with further volume loss in select regions of the isocortex,
including the orbital area, ectorhinal area, auditory areas, and
temporal association areas, coupled with volume gain in white
matter tracts, and contrasted by relative preservation in subcortical
and cerebellar regions. Additionally, poorer working memory
performance on the Y-maze task was associated with smaller
volume of the anterior cingulate area and larger volume of the
hippocampal formation, regardless of age. Lastly, SCN analyses
revealed widespread maturational changes in node-level degree
centrality and a significant decrease in network modularity, but not
in the aging-related comparison. Network transitivity and mean
distance remained relatively stable across the mouse lifespan.

4.1. Brain volume changes across
maturation and aging in mice

In the present study, the most prominent maturational changes
in volume (young vs. middle-aged mice) occurred in the isocortex.
This finding mirrors those in human literature, wherein protracted
development in the cerebral cortex precedes widespread gray
matter loss, most notably in the prefrontal cortex and to a lesser
extent in the parietal and temporal association areas (Raz, 1997;
Tisserand et al., 2002; Resnick et al., 2003). Similar to these trends,
we detected significant volume loss in 7 of the 15 isocortical regions,
including 2 of the 3 “prefrontal” regions in rodents (prelimbic area,
anterior cingulate area) (Laubach et al., 2018) and the temporal
association area. We did not observe significant age-related changes
in the remaining prefrontal region (infralimbic area) or in the
parietal association area. The aforementioned volume loss in the
anterior cingulate area, an a priori ROI, aligns with previous rodent
literature (Hamezah et al., 2017), along with most human findings
(Raz, 1997; Good et al., 2001; Bergfield et al., 2010).

Aging-related volume changes, indexed by comparing middle-
age vs. old mice, were also associated with considerable volume loss
in the isocortex, with atrophy detected in 4 of the 15 associated
regions. Notably, the temporal association area experienced both
maturational and aging-related loss, suggesting lifelong volumetric
decrease, as did the auditory areas. Moreover, the orbital area,
another a priori ROI, experienced significant aging-related loss
consistent with human literature (Convit et al., 2001; Tisserand
et al., 2002), suggesting that this region may be particularly sensitive
to late-life volume decrease in mice.

Beyond the isocortex, other areas demonstrated similar
patterns to human trajectories of lifespan brain volume.
Specifically, we found significant volume increase in 4 of 5
brainstem regions in the maturational comparison. Furthermore,
these regions did not experience significant volume loss or
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FIGURE 2

Volumetric changes in maturational and aging-related comparisons. Negative and positive linear changes in regional brain volume are depicted
between pairwise comparisons of young and middle-age mice (maturational) (A) and middle-age and old mice (aging-related) (B). Brain regions that
underwent significant change in volume are denoted by asterisk (∗).

gain in the aging-related comparison. These findings align with
human trajectories of increasing brainstem volume in maturation
(Walhovd et al., 2005), and accounts of relative stability in aging
(Luft et al., 1999; Walhovd et al., 2011; Long et al., 2012). In
addition, the maturational comparison of white matter tracts in the
mice revealed 4 of 5 tracts significantly increasing in volume. This
aligns with previous rodent studies (Calabrese and Johnson, 2013)
as well as human trends of white matter gradually maturing into
adulthood (Jernigan et al., 2001; Liu et al., 2016).

Although in the present study we described cortical
maturational and aging-related volume changes in mice similar
to those observed in humans, we also found deviations from
human lifespan trajectories. Most notably, we did not detect
significant maturational or aging-related volumetric changes in
the 3 subcortical structures, including the hippocampal formation,
an a priori ROI, or in cerebellar regions. This is contrary to
evidence from human studies, which suggest that subcortical
structures reach maximum volume early in development before
undergoing a steep decline in the sixth decade (Dima et al., 2022).
It is similarly contrary to evidence of continued hippocampal
formation neurogenesis and growth into adulthood in both
humans and rodents (Diamond et al., 1975; Sullivan, 1995) and
of aging-related volumetric decline of the cerebellum in humans
(Escalona et al., 1991; Jernigan et al., 2001; Raz et al., 2001).
Although the absence of aging-related decrease in the hippocampal
formation differs from accounts of drastic late-life volume loss in
humans and rodents (Jernigan et al., 2001; Alexander et al., 2012;

Hamezah et al., 2017; Zheng et al., 2019), it does align with
contradictory findings of preservation in humans (Sullivan, 1995;
Good et al., 2001). Moreover, it is possible that segmentation
of the hippocampal formation may have increased sensitivity to
changes in volume (Hackert et al., 2002). Finally, the observed
significant aging-related volume increases in 2 of 5 white matter
tracts differs from findings of drastic late-life white matter loss in
human literature (Jernigan et al., 2001; Liu et al., 2016).

Overall, the volumetric changes found in the present study
were more numerous and robust in the maturational comparisons
than the aging-related comparisons. We speculate this may be
attributable to the relatively shorter late-life period in mice
compared to the protracted aging period humans experience.
Furthermore, the controlled laboratory setting may have been
protective against perturbations caused by adverse environmental
variables contributing to aging-related decline. Lastly, it is also
possible that our study was underpowered to detect aging-related
changes due to small group size and greater inter-subject (i.e.,
significant within-group) variability.

4.2. Associations between working
memory performance and regional brain
volume

Poorer working memory performance in the Y-maze was
associated with smaller volume of the anterior cingulate area.
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TABLE 2 Pairwise group differences in volume.

Young vs. Middle-age Middle-age vs. Old

t pBH t pBH

A priori regions

Hippocampal formation 0.428 0.744 −0.810 0.550

Anterior cingulate area −4.898 0.001 −0.181 0.872

Orbital area −2.060 0.111 −2.859 0.038

Brain-wide regions

Brainstem – – – –

Hypothalamus 5.425 0.001 −1.374 0.301

Medulla 5.581 0.001 2.197 0.092

Midbrain 4.413 0.003 1.419 0.287

Pons 6.837 0.000 1.923 0.132

Thalamus 1.975 0.126 0.268 0.831

Cerebellum – – – –

Cerebellar cortex −0.410 0.004 −0.996 0.475

Cerebellar nuclei 5.802 0.001 0.852 0.531

Cerebral cortex – – – –

Cortical sub-plate 0.347 0.795 −0.272 0.831

Hippocampal formation 0.428 0.744 −0.810 0.550

Olfactory areas −0.658 0.640 −0.509 0.710

Cerebral isocortex – – – –

Agranular insular area −2.365 0.067 −0.857 0.531

Anterior cingulate area −4.898 0.001 −0.181 0.872

Auditory areas −4.243 0.004 −2.725 0.044

Ectorhinal area −1.901 0.132 −3.199 0.022

Frontal pole −2.160 0.094 1.586 0.229

Infralimbic area −0.048 0.962 −1.180 0.380

Orbital area −2.060 0.111 −2.859 0.038

Perirhinal area −2.377 0.067 −1.277 0.343

Posterior parietal association
areas

−0.478 0.717 −0.504 0.710

Prelimbic area −3.021 0.028 1.000 0.475

Retrosplenial area −2.565 0.051 −0.522 0.710

Somatomotor areas −3.711 0.009 0.962 0.487

Somatosensory areas −4.827 0.001 −0.681 0.634

Temporal association areas −2.799 0.039 −2.674 0.047

Visual areas −2.711 0.044 −0.575 0.692

Cerebral nuclei – – – –

Pallidum 5.104 0.001 1.253 0.348

Striatum −2.384 0.067 −0.190 0.872

White matter tracts – – – –

Cerebellum related fiber
tracts

2.537 0.052 1.917 0.132

Cranial nerves 5.851 0.001 1.570 0.231

Extrapyramidal fiber system 3.408 0.016 0.888 0.528

Lateral forebrain bundle
system

3.275 0.020 3.075 0.027

Medial forebrain bundle
system

3.177 0.022 2.611 0.050

Group differences in regional volume, residualized for total brain volume. A negative t score indicates a period-specific decrease in volume, and a positive t score indicates a period-specific
increase in volume. BH, Bonferroni-Holm. Bold values indicate that these values were statistically significant.

Frontiers in Aging Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1195748
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1195748 July 1, 2023 Time: 14:44 # 10

Clifford et al. 10.3389/fnagi.2023.1195748

FIGURE 3

Regional degree centrality differences in a priori ROIs for maturational and aging-related comparisons. Maturational comparisons in structural
covariance networks for the a priori age-sensitive regions revealed significant decrease in degree centrality for the anterior cingulate area (A), a
maturational increase in degree centrality in the hippocampal formation (B), and no significant differences observed in the orbital area (C).
Aging-related comparisons in structural covariance networks for the a priori age-sensitive regions did not yield significant differences in degree
(D-F). Differences in degree were determined across density thresholds of 0.05 and 0.40 at 5 consecutive significant density thresholds [statistical
significance indicated by white circles (∗p < 0.05)].

Notably, this region also underwent a significant maturational
decrease in volume and degree centrality. The anterior cingulate
area has previously been implicated in working memory in
rodents (Teixeira et al., 2006), similar to the involvement of
the ACC in working memory in humans (Kaneda and Osaka,
2008), including aging-related decline in functional activity of
the ACC in working memory performance (Pardo et al., 2007).
Furthermore, as one of three prefrontal regions in rodents, this
association also supports the relationship between the prefrontal
cortex and working memory decline (Head et al., 2002). In
the a priori ROI analyses, poorer working memory performance
was also associated with larger volume of the hippocampal

formation, despite no significant volume differences identified
over the lifespan. This association further supports the well-
known involvement of the hippocampal formation in working
memory in humans, and rodents (Yoon et al., 2008; Yonelinas,
2013). A meta-analysis of volumetric changes in the hippocampus
and memory outcomes in humans demonstrated high variability
in the structural associations in older adults, while youth and
young adults trended toward worse performance with higher
hippocampus volume (Van Petten, 2004). The association observed
in our mice is difficult to interpret against the variable human
literature, but notably does not align with rodent findings of
smaller hippocampal formation volume and poorer working
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FIGURE 4

Circular degree plots of significant differences in regional connectivity in a priori ROIs. The anterior cingulate area networks in young (A),
middle-age (B), and old (C) mice are depicted at network density of 24% for visualization. The hippocampal formation networks in young (D),
middle-age (E), and old (F) mice are depicted at network density of 12% for visualization. Nodes are arranged clockwise by degree, the number of
significant correlations a given brain region has with other regions within the network, with the highest-degree node at the top of the circle. Degree
is further reflected in node size. Rank refers to the numerical value of a region’s degree, sorted largest to smallest in the network. The region of
interest and its direct connections are highlighted in red.

memory performance (Kadar et al., 1990; Hamezah et al.,
2017).

We observed additional associations that did not survive
multiple corrections. These included the agranular insular area
and ectorhinal area, two additional isocortical regions where
poorer working memory performance was associated with smaller
brain volume. This corroborates the agranular insular area’s
involvement in memory processes in rodents, including working

memory (DeCoteau et al., 1997; Zhu et al., 2020). The ectorhinal
area, which also experienced significant aging-related volume
loss, borders the perirhinal cortex and comprises the posterior
of the parahippocampal gyrus (Westerhaus and Loewy, 2001).
The ectorhinal area is also implicated in memory (Tulving and
Markowitsch, 1997), and has been observed to be sensitive to
aging-related volume loss in humans (Raz and Rodrigue, 2006).
Lastly, we found that poorer working memory performance was
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FIGURE 5

Brain-wide degree centrality differences in maturational and aging-related comparisons. Brain-wide maturational comparisons in structural
covariance networks revealed significant decreases in degree in the auditory areas (A), ectorhinal area (B), and somatomotor areas (C), and
maturational increases in degree in the cerebellar nuclei (D), cerebellum related fiber tracts (E), cortical subplate (F), and midbrain (G). No significant
differences were found in any brain regions in the aging-related network comparisons. Changes in degree were determined across density
thresholds of 0.05–0.40 at 5 consecutive significant density thresholds [statistical significance indicated by white circles (∗p < 0.05)].
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FIGURE 6

Network modularity comparisons. A significant maturational decrease in modularity was observed between young and middle-age mice networks
(A). Modularity did not differ significantly between middle-age and old mice networks (B). Changes in modularity were determined across density
thresholds of 0.05 and 0.40. 5 consecutive significant density thresholds [statistical significance indicated by white circles (∗p < 0.05)].

associated with larger volume of the medial forebrain bundle
system, a white matter tract implicated in motivation and reward
(Wise, 2005; Anthofer et al., 2015). While white matter volume
generally shows less associations with cognition compared to those
found in gray matter (Taki et al., 2011), it is notable that the
significant aging-related volume increase in this region deviates
from human patterns of white matter loss (Liu et al., 2016).
Overall, these associations reflected a general trend of better
working memory performance from structurally “younger” brain
regions, and declining cognitive performance when regional brain
structures were characteristic of older mice.

Although we observed numerous volumetric changes, few brain
regions showed associations with working memory performance.
This may be due to the relatively discreet significant regional
volume changes between middle-age and old mice. It is also
possible that older mice utilize cognitive reserve by employing
alternative cognitive strategies to compensate for deficits through
differential recruitment patterns of brain activity and structural
reorganization (Stern, 2009; Eyler et al., 2011; Zatorre et al.,
2012). Lastly, it is notable that aging-related decline in cognitive
function is also driven by factors other than brain volume loss,
including diminished synaptic, neurotransmitter, cell signaling,
and mitochondrial function (Shankar, 2010).

4.3. Structural covariance network
topology across maturation and aging in
mice

Investigating SCN changes allowed us to consider structural
synchronization suggestive of interactions among and between

multiple brain regions. The existing SCN literature in rodents
is limited (Alexander-Bloch et al., 2013), and to our knowledge
no studies have explored lifespan SCN trajectories in mice using
whole-brain SCN methodology. In our maturational comparison,
9 of the 32 regions experienced significant changes in degree
centrality, with 5 regions in young mice experiencing initially
highly connected and influential nodes in the network decrease in
centrality into middle-age, including the anterior cingulate area.
Four regions emerged as significantly connected nodes in the
middle-age network, including the hippocampal formation. These
differences in degree centrality largely coincided with significant
changes in volume, whereby 3 of the 4 maturational degree
centrality decreases co-occurred with significant maturational
volume loss, and 3 of the 5 maturational increases in degree
centrality accompanied significant maturational volume increase.
This may reflect a general trend of higher or lower influence
of nodes within the network being associated with directionally
consistent volume changes. In contrast, the comparison between
middle-age and old mice yielded no significant degree centrality
differences across all 32 regions. These findings also offer insight
into how mouse SCNs compare to established human lifespan
SCN trajectories. In humans, the transition from childhood
and adolescence to young adulthood brings a generalized
homogenization of covariance patterns, as networks stabilize
toward adult topology (Zielinski et al., 2010). Similarly, a recent
large-scale study described pronounced stabilization of overall
structural covariance by age 25 (Nadig et al., 2021). The widespread
maturational differences in regional degree we observed may reflect
developmental reorganization of the SCNs in the young mice,
prior to stabilizing into adult SCN patterns in the middle-aged
mice. The lack of degree centrality differences between middle-aged
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FIGURE 7

Network communities in mice. Communities of densely interconnected nodes were identified using a Walktrap community detection algorithm for
the structural covariance networks of the young (A), middle-age (B), and old mice (C). Regions of interest are sorted by isocortical (green),
subcortical (purple), white matter (blue), brainstem (orange), cerebellum (yellow), and cerebellar nuclei (red) regions. Provincial hub regions are
denoted by “P,” and connector hub regions are denoted by “C” in the young “Y,” middle-age “M” and old “O” networks.

and old mice suggest that network stability persisted as mice got
older.

In addition to regional connectivity, we investigated global
measures of network integration and segregation to further
characterize lifespan SCNs in mice. The lack of differences in mean
distance across the lifespan of the mice may indicate that mice do
not experience late-life reduction in network efficiency in normal
aging that is typically observed in human aging (Khundrakpam
et al., 2013; Betzel et al., 2014). Furthermore, the lack of
maturational or aging-relating differences in network transitivity
suggests clustering in mouse SCNs is relatively stable across

the lifespan. However, we did observe a significant maturational
decrease in modularity, whereby young mice had higher network
modularity than middle-aged mice, but there were no differences in
modularity in the aging-related comparison. Human maturational
SCN trajectories demonstrate highly segregated networks favoring
localized connections in youth and adolescence, before shifting
toward more distributed and globally connected networks in
young adulthood (Khundrakpam et al., 2013; Cao et al., 2016).
The observed maturational decrease in modularity suggests
mice may share a similar trajectory with humans, whereby
network segregation decreases from youth to young adulthood.
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In older age, human SCN segregation has been posited to
decrease, becoming further dispersed and disorganized (Chen
et al., 2011; Jao et al., 2020), however, conflicting findings
suggest that network segregation may actually increase in old
age (Montembeault et al., 2012). In particular, modularity in
structural and functional networks has drawn attention as a
potential biomarker for aging (Aboud et al., 2018) as decreasing
modularity may be associated with aging-related dedifferentiation
of specialized cognitive processes (Chen et al., 2011; Onoda and
Yamaguchi, 2013; Song et al., 2014). The observed lack of aging-
related modularity loss suggests that normal mice aging may
differ from SCN segregation trajectories present in human aging.
Furthermore, this finding may also reflect the relatively discreet
volumetric changes in our aging-related comparison.

To further probe our findings in network modularity,
we explored concomitant changes in densely interconnected
sub-graphs within the networks. The significant maturational
decrease in modularity detected in our whole-brain analysis
was reflected in the sub-graphs, as the high within-community
connections and low inter-community connections in the young
mice communities shifted to sparser within-community and
increased inter-community connections in the middle-age
communities. While the whole-brain aging-related comparison
for modularity was not significant, the old-age communities more
closely resembled an “old network phenotype,” with few within-
community connections, high inter-community connections,
and smaller, more numerous communities. Among the identified
provincial hubs, the frontal pole emerged as the provincial hub
for a community containing predominantly isocortical regions in
both young and middle-age networks, suggesting its importance
in facilitating specialized information processing among regions
associated with higher-order sensory and cognitive processes. Only
one provincial hub, the midbrain, emerged in the old-network
communities, reflecting the overall reduced within-community
connections. Lastly, the temporal association areas and pons were
identified as connector hubs in both young and middle-aged
networks, highlighting their importance in facilitating information
exchange between segregated network communities.

Certain limitations in this study should be considered. Most
notably, it is possible that that we were underpowered to detect
volumetric changes, particularly between the middle-age and old
groups, given our relatively small sample size. Future work to
validate and further explore regional volume trajectories across
the mouse lifespan will benefit from larger sample sizes in each
age-group. Secondly, the study utilized a cross-sectional design,
considering different groups of mice at each timepoint. Ideally,
future studies could employ a longitudinal design, observing the
same group of mice over time, thereby increasing the strength
of inferences drawn from the maturational and aging-related
comparisons. Furthermore, only male mice were available at the
time of this study, therefore our results are not generalizable
to female mice. Differences in gray matter volume have been
observed between male and female mice, both in speed of gray
matter development and variation in regional volume (Spring
et al., 2007; Qiu et al., 2018). It is possible these inherent
differences may influence maturational or aging-related brain
volume outcomes. Furthermore, differences in brain structure and
function may vary across mice strains. Therefore, the observed
changes in brain volume in the Charles River C57BL/6 mice

may not be fully generalizable to other strains of mice. Lastly,
while working memory decline in aging is well-documented, an
additional limitation of our work is that we used only one test,
the Y-maze, to evaluate working memory. It is also important to
acknowledge that multiple cognitive domains are affected by aging,
and future work would benefit from exploring additional domains
for a more nuanced picture of the association between volumetric
changes and cognitive outcomes.

Despite these limitations, this study provides a detailed account
of regional brain volume changes across the mouse lifespan and
maps them to working memory performance, while also exploring
complementary trends in structural covariance network topology.
This comprehensive approach may facilitate future progress in
translation between rodent models and human brain aging.
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