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ABSTRACT 
 

The emergence of barium titanate nanoparticles (BaTiO3 NPs) represents an advancement in 
various fields such as technology, health, and agribusiness. However, increased production 
heightens the risk of their dispersion into the environment, thereby raising concerns about potential 
exposure to animals and humans, including the risk of dermal exposure. This study explores the 
chemical-physical properties of BaTiO3 NPs and their cytocompatibility using a bovine fibroblast cell 
model. The size and Zeta potential of the NPs were analyzed using scanning electron microscopy 
and dynamic light scattering technique. Raman spectroscopy was used to characterize the 
composition of the BaTiO3 NPs. Bovine fibroblasts were exposed in vitro to NPs (0.1 to 100 µg mL-1) 
for 24 hours to evaluate the cytocompatibility using the Thiazolyl Blue Tetrazolium Bromide assay 
and Trypan Blue exclusion test. The data were evaluated by analysis of variance and the means 
compared by the Tukey test. Scanning electron microscopy revealed that BaTiO3 NPs measured 
approximately 100 nm. Dynamic light scattering analysis indicated a hydrodynamic size of 149.27 
nm with a polydispersion index of 0.37, and the Zeta potential was -13mV. Raman spectroscopy 
analysis highlighted the cubic phase of BaTiO3 NPs. Cytotoxicity tests demonstrated that BaTiO3 
NPs did not affect cell viability, with 10 µg mL-1 resulting in enhanced cell proliferation. Overall, 
these findings underscore the non-toxic characteristics of BaTiO3 NPs in fibroblast cells, positioning 
them as promising and cytocompatible nanomaterials. 

 

 
Keywords: Ceramic nanomaterial; In vitro models; piezoelectricity; safe nanomaterials. 
 

1. INTRODUCTION  
 

Nanotechnology involves the manipulation of 
matter at atomic, molecular, and supramolecular 
levels to create novel materials, devices, and 
systems with unique properties and 
functionalities. With promising solutions across 
diverse domains, case studies abound, 
highlighting how nanoscale materials hold the 
potential to address contemporary challenges 
within the biomedical and agribusiness sectors 
[1,2]. The distinct ability to manipulate materials 
at the nanoscale makes nanotechnology 
unparalleled. On this scale, the forces governing 
matter differ significantly from those at the micro 
or macro scale [3]. Nanomaterials possess a 
defining characteristic: at least one dimension 
(height, width, or depth) measures less than 100 
nanometers (nm), or 10-9 meters [4]. 
Consequently, nanomaterials exhibit unique 
physical and chemical properties, including 
significantly increased surface area and 
heightened reactivity compared to larger-scale 
materials [5]. 
 

Barium titanate nanoparticles (BaTiO3 NPs) are 
perovskite bioceramic materials and have been 
considered emerging nanomaterials due to their 
ferroelectricity and piezoelectric properties [3,6]. 
Notably, recent reports suggest that BaTiO3 NPs 
could be used in a wide range of applications 
including imaging diagnostics [7,8,] neural 
stimulation networks [9], drug nanocarriers [10], 
tissue engineering [11,12], and agribusiness [13].  

The increasing concern over the toxicity of 
BaTiO3 NPs arises from their vast range of 
potential applications, given that the rapid spread 
of these nanomaterials could potentially impact 
both animal and human health. Previous studies 
have demonstrated that toxicological risks are 
related to the fact of substantial differences in the 
chemical and physical properties of nanoscale 
materials compared to the same materials in bulk 
form [14,15]. Current research on the in vitro 
cytotoxicity of BaTiO3 NPs in biological models is 
restricted. Especially, these studies incorporated 
BaTiO3 NPs alongside other materials, 
potentially mitigating toxicity factors through 
functionalization [16-18].  
 
Exposure of the skin to nanomaterials poses 
potential risks that require thorough 
understanding and mitigation [19]. Nanomaterials 
have the capability to penetrate the skin barrier 
and interact with underlying cells, potentially 
causing adverse effects such as cellular damage 
[20]. In this context, there is a gap regarding the 
possible toxic effects of skin exposure to BaTiO3 
NPs. Therefore, it is important to investigate the 
effects of nanomaterial exposure on skin cells 
using appropriate models. In vitro models 
utilizing cultured fibroblasts offer a valuable tool 
for studying cutaneous exposure to 
nanomaterials. Fibroblasts are a type of skin cell 
found in the dermis and play a crucial role in 
maintaining skin structure and function [21]. This 
in vitro cellular model allows for the study of 
cytotoxic mechanisms, encompassing changes 
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in cell morphology, alterations in metabolism, 
and cell death, in response to exposure to 
materials [22,23]. Therefore, the present work 
aimed to study the chemical-physical 
characteristics of BaTiO3 NPs and their 
cytocompatibility with bovine fibroblast cells 
model cultured in vitro. 
 

2. MATERIALS AND METHODS  
 

2.1 Materials  
 

BaTiO3 NP (Product Number 467634, CAS 
Number 12047-27-7, purity> 99%, density of 
~6,08 g/cm3), Dulbecco’s Modified Eagle Medium 
(DMEM), fetal bovine serum (FBS), penicillin-
streptomycin antibiotics, HCl and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) thiazolyl blue tetrazolium bromide 
(MTT) assay kit were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Trypan Blue was 
purchased from Invitrogen (Carlsbad, CA, USA).   
 

2.2 Dynamic Light Scattering Analysis 
 

BaTiO3 NP suspensions (100 µg mL-1) were 
dispersed in DMEM medium by sonication using 
an ultrasonic instrument for 1 minute (cycle 0.5, 
amplitude 70) (UP200S, Hielscher, Teltow, 
Germany). The average size and Zeta potential 
were determined using the dynamic light 
scattering (DLS) technique with the Malvern 
3000 Zetasizer NanoZS equipment (Malvern 
Instruments, UK). 
 

2.3 Scanning Electron Microscopy (SEM) 
 

The size distribution and morphology of BaTiO3 
NPs were characterized through scanning 
electron microscopy (SEM) analysis. This 
analysis was conducted using a high-resolution 
Zeiss-DSM 950 microscope (manufactured by 
Zeiss, Germany) operating at an accelerating 
voltage of 6 kilovolts (kV).  
 

2.4 Raman Spectroscopy 
 

Raman Spectroscopy was performed with a 
Bruker RFS 100 (Bruker, USA) spectrometer 
excited with a Nd + 3/YAG laser operating at 
1064 nm, equipped with an InGaAs detector 
cooled with liquid nitrogen. The spectra were 
acquired at 4 cm−1 resolution. An average of 
1024 scans were collected with a laser power 
rating of 110 mW. 
 

2.5 Cell Culture 
 

Primary fibroblast cell cultures derived from 
bovine skin biopsies were stored in the cell bank 

of the Brazilian Agricultural Research 
Corporation. All relevant biosafety regulations 
were strictly followed, following the approved 
procedures of the Internal Biosafety Commission 
under protocol number 03/2012. To establish the 
cell bank, fibroblasts from the skin biopsies were 
cultured in DMEM supplemented with 10% FBS 
and 100 units/ml of penicillin-streptomycin. The 
cells were incubated at 37°C, 5% CO2, and 95% 
humidity (Model 4130, Thermo Fisher Scientific, 
Waltham, MA, USA), and cryopreserved after the 
second passage. Before their use in this study, 
fibroblasts were thawed and subsequently 
cultured up to the third passage. 
 

2.6 In vitro Nanoparticle Exposure 
 
In vitro cytotoxicity assays were based on ISO 
10993-5 [24]. Samples of BaTiO3 NPs at a 
concentration of 5 mg mL-1 were dispersed in 
DMEM cell culture medium, supplemented with 
10% FBS. Then, fibroblast cells (60% 
confluence) were seeded into 96-well plates at a 
6x103 cells/well. Cells were incubated with 
BaTiO3 NPs at different concentrations: 0 
(vehicle control), 0.1, 1, 10, 50, and 100 μg mL-1 
for 24 hours. 
 

2.7 Cell Morphology Analysis 
 
Monitoring the growth and cell morphology of 
fibroblasts was performed using light microscopy 
(Nikon TS100F, Nikon Instruments Inc., Melville, 
NY, USA) to evaluate the possible impact of cell 
exposure to BaTiO3 NPs on cell morphology. 
 

2.8 Mitochondrial Metabolism Assay 
 
Cell proliferation was evaluated after exposure of 
cells to different experimental groups by the 
Thiazolyl Blue Tetrazolium Bromide assay 
(MTT), which assesses mitochondrial activity. 
After NP exposure, MTT aliquots at the 
concentration of 5 mg mL-1 were prepared, and 
then incubated with the cell cultures using this 
solution in the culture medium, for 4 hours at 
37ºC, in a humidified atmosphere containing 5% 
CO2 and 95% atmospheric air. After the culture 
medium was removed and isopropanol-acid 0.04 
M HCl was added to complete the solubilization 
of the precipitate. Then, the absorbance was 
determined using the wavelength of 570 nm in 
the Eon Microplate Reader equipment (BioTek, 
Winooski, USA). Cell viability results in the 
groups exposed to BaTiO3 NP were expressed 
as a percentage compared with the control 
group. 
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2.9 Trypan Blue Assay 
 
The trypan blue exclusion test assessed the 
effect of BaTiO3 NP on cell viability [23]. After NP 
exposure, the cells were trypsinized and stained 
with 0.4% Trypan Blue solution. Then, the cells 
were counted using a hemocytometer. 
 

2.10 Statistical Analysis 
 
Data from the cell viability assay were evaluated 
by variance analysis (ANOVA) and the means 
were compared by the Tukey test. P values lower 
than 0.05 were considered significant. The 
results were presented as means ± standard 
error (EP) of the mean. 
 

3. RESULTS AND DISCUSSION 
 
Initially, we carried out the physicochemical 
characterization of the BaTiO3 NPs to gain 
deeper insights into their inherent properties. The 
hydrodynamic size of the BaTiO3 NPs was 
measured at 149.27±0.81 nm, with a 
polydispersion index of 0.37. Furthermore, the 
suspension of BaTiO3 NPs displayed a Zeta 
potential of -15.3±0.78 mV. The dispersion status 
of nanomaterials can significantly influence their 
impact on biological systems [25]. A 
polydispersion index of 0.37 characterizes a 
moderately polydisperse sample [26], suggesting 
a potential instability of the BaTiO3 NP 
suspension. Zeta potential, also known as 
electrokinetic potential, serves as an indicator of 
dispersion stability and is a crucial factor 

influencing the interaction of nanomaterials with 
cellular components. Generally, values 
exceeding 30 mV (in modulus) for particulate 
matter are deemed stable due to electrostatic 
repulsion [27]. Instabilities in the suspension may 
result in the formation of clusters consisting of 
weakly linked nanomaterials, or aggregates 
comprising strongly bonded nanomaterials that 
are challenging to separate. These occurrences 
are common when the Zeta potential falls below 
20 mV [28]. 
 

The morphological assessment of the BaTiO3 NP 
suspensions obtained via SEM revealed the 
presence of aggregates (Fig. 1), with the 
nanoparticles appearing to be approximately 100 
nm in size. 
 

The size of the nanomaterial is a critical 
determinant of its toxicity, which is essential for 
any biotechnological application [29]. 
Nanomaterial size can affect their penetration 
into cells, tissues, and organs, as well as their 
increased interaction with specific membrane 
receptors, facilitated by their highly reactive 
nature due to free atoms on their extensive 
surface area [30]. This diminutive nanomaterial 
size can induce oxidative stress, DNA damage, 
and cell death [4,31-33]. In this investigation, the 
moderate polydisperse sample of BaTiO3 NPs 
exhibited an average size of 149.27±0.81 nm, 
indicating a dispersion comprising small particle 
sizes and a limited number of aggregates, as 
observed in the SEM image (Fig. 1B), likely 
attributable to the low modulus value of the Zeta 
potential. 

 

 
 

Fig. 1. (a) Suspensions of barium titanate nanoparticles (BaTiO3 NPs) in Dulbecco’s Modified 
Eagle Medium (100 µg mL-1). (b) Scanning electron microscopy (SEM) images of BaTiO3 NPs. 

Scale bar =100 nm 
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Raman spectroscopy was used to examine the 
structure of BaTiO3 NPs. Raman peaks of 
BaTiO3 NPs located at 192 cm-1, 306 cm-11, 511 
cm-1, 716 cm-1 assigned at [A1(TO), E(LO)]; (B1, 
E(TO + LO)); (A1(TO), E(TO)) and (A1(LO), 
E(LO)), respectively (Fig. 2). In Raman 
measurements, the characteristic feature of the 
tetragonal BaTiO3 NPs phase is observed 
around 306 cm-1. The broad band at 513 cm-1 
can be attributed to the intrinsic cubic phase (Fig. 
2), corroborating data available in the literature 
that characterizes these nanomaterials with cubic 
and tetragonal formats [34-37]. 
 
Cells were exposed to different concentrations 
(0.1-100 μg mL-1) of BaTiO3 NPs for 24, 48 h, 
and cell viability was measured by microscopy 
analyses, MTT and Trypan Blue assays. The 
evaluation of cellular morphology is a critical 
parameter in nanotoxicity studies [38]. In our 
current study, we observed no significant 
changes in the cellular morphology of fibroblasts 
at any concentration of BaTiO3 NPs compared to 
the control group (Fig. 3). 
 
Similar findings were reported by Amaral et al. 
[12] who did not detect any changes in the 
morphology of human mesenchymal stem cells 
in vitro exposed to BaTiO3 NPs. However, 
several nanomaterials induce cellular toxicity 
through the generation of reactive oxygen 

species, which can impact the dynamics of 
microtubules, thereby modifying cell morphology 
[39,40]. Ahamed et al. [41] reported alterations in 
cell morphology among human lung carcinoma 
(A549) cells exposed to BaTiO3 NPs, attributing 
these changes to oxidative stress. However, our 
investigation did not reveal any significant 
changes in cell morphology following exposure to 
BaTiO3 NPs. One potential explanation could be 
attributed to the specific cellular model utilized, 
as exposure routes such as air and skin contact 
may induce distinct toxicological responses. 
 

Importantly, aggregate points of the 
nanoparticles were evident at concentrations of 
50 and 100 µg mL-1, as depicted by the arrows 
(Fig. 3E, F). Despite studies in the literature 
demonstrating that nanoparticle aggregation 
induces nanotoxicity [42], our study showed that 
aggregation also did not induce cytotoxic 
responses. The presence of BaTiO3 NPs 
aggregates might have been influenced by the 
composition of the culture medium containing 
fetal bovine serum proteins. Consequently, a 
future study could investigate the impact of 
varying concentrations of fetal bovine serum on 
BaTiO3 NP toxicity. 
 

Based on the MTT assay BaTiO3 NPs, except for 
at 10 µg mL-1, did not significantly impact cell 
proliferation when compared to the non-exposed 
control (P>0.05) (Fig. 4).  

 

 
 

Fig. 2. Raman spectra of barium titanate nanoparticles (BaTiO3 NPs) 
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Fig. 3. Cellular morphology evaluation of bovine fibroblasts exposed to barium titanate 
nanoparticles (BaTiO3 NPs) for 24 hours. (a) 0 (Control), (b) 0.1, (c) 1, (d) 10, (e) 50, and (f) 100 

μg mL-1. Magnification 100×. Scale bar = 10 μm 
 

 
 

Fig. 4. Analysis of bovine fibroblast cell proliferation exposed to barium titanate nanoparticles 
(BaTiO3 NPs) using the MTT assay. Mean percentage of viable cells after exposure to 

concentrations of 0 (control). 0.1, 1, 10, 50 e 100 μg mL-1 of BaTiO3 NPs for 24 hours. *P<0.05 
 
Notably, the concentration of 10 µg mL-1 BaTiO3 
NPs led to an increase in cell proliferation 
compared to the control group (P<0.05).  The 
MTT assay, a common colorimetric test used to 
evaluate cell viability, operates by converting 
tetrazolium salt into formazan crystals through a 

mitochondrial membrane, serving as an indicator 
of cell proliferation [43,44]. Several studies in 
nanotoxicology utilize this test as an initial 
parameter to assess the toxicity of nanomaterials 
[12,45-47]. In our study, the 10 µg mL-1 
concentration of BaTiO3 NPs promoted cell 
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proliferation compared to the control group, 
consistent with previous research demonstrating 
enhanced adhesion and proliferation of human 
osteoblastic cells following exposure to BaTiO3 
NPs [48]. The increase in cell proliferation at a 
concentration of 10 µg mL-1 might be attributed to 
the potential stimulation of specific cell signaling 
pathways or the facilitation of cellular metabolic 
activities, potentially leading to enhanced cell 
division. Additionally, this enhanced cell 
proliferation could be associated with the 
cytocompatibility of BaTiO3 NPs at this specific 
concentration, indicating a favorable response of 
the cells to the nanoparticle stimulus. 
 
On the other hand, the present study did not 
detect changes in cell proliferation at 
concentrations of 50 and 100 µg mL-1. This 
finding is consistent with prior studies, which 
similarly showed no differences in the MTT test 
when human mesenchymal stem cells were 
exposed to BaTiO3 NPs for 24 h, even at 
elevated concentrations [12]. These results are 
likely attributed to the observed increase in the 
formation of nanoparticle aggregates at 
concentrations of 50 and 100 µg mL-1 BaTiO3 
NPs, thereby reducing the availability of free 
nanoparticles for interaction with cells. 
 
A Trypan Blue test was conducted to investigate 
the cell viability of fibroblast cells cultured with 
BaTiO3 NPs (Fig. 5). This assay relies on the 

principle that cells with intact membranes 
exclude Trypan blue dye [21]. The results 
demonstrated that none of the BaTiO3 NP 
treatments significantly altered cell viability when 
compared to the control group (P>0.05).  
 
Similarly, a previous study reported no decrease 
in cell viability in vitro when stem cells were 
exposed to BaTiO3 NPs at the same 
concentrations as in our study [12].  However, 
another study has demonstrated that the cell 
viability of A549 cells exposed to concentrations 
of up to 50 μg mL-1 BaTiO3 NPs for 24 h was 
reduced [41]. The differing responses observed 
in these studies may be attributed to the specific 
cell lineage under evaluation. It is plausible that 
the physiological characteristics of the fibroblast 
cells, including their innate resistance to external 
stressors and their capacity to adapt to various 
environmental conditions, played a role in 
maintaining cell viability despite exposure to 
BaTiO3 NPs. Moreover, the intricate interplay 
between the physicochemical properties of the 
BaTiO3 NPs and the cellular microenvironment 
could have influenced the cells' response. This 
includes parameters such as the surface charge, 
size, and aggregation status of the nanoparticles, 
as well as the composition of the cell culture 
medium and the presence of serum components, 
which might have interacted with the 
nanoparticles, thereby influencing their overall 
cytocompatibility. 

 

 
 

Fig. 5. Analysis of bovine fibroblast cellular viability exposed to barium titanate nanoparticles 
(BaTiO3 NPs) using the Trypan Blue Assay. Mean percentage of viable cells after exposure to 

concentrations of 0 (control). 0.1, 1, 10, 50 e 100 μg mL-1 of BaTiO3 NPs for 24 hours 
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4. CONCLUSION 
 
Under the experimental conditions of this study, 
BaTiO3 NPs exhibited cytocompatibility with 
bovine fibroblasts, with a notable observation 
that at a concentration of 10 µg mL-1, BaTiO3 
NPs led to increased cell proliferation. These 
findings provide valuable insights into the safety 
profile of BaTiO3 NPs, particularly in their 
potential applications within the medical and 
agricultural industries. 
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