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ABSTRACT 
 

Climate change causes various negative effects on plants, especially due to rapid changes in 
temperature, rainfall patterns, floods or droughts, and outbreaks of pests and diseases. Its change 
is predicted to cause widespread species expansion and extinction. Climate-induced local 
extinction has already occurred in hundreds of species. However, at the edge of the warm zone, an 
equal number of species were not exposed to local extinction, indicating that either phenotypic 
plasticity or genetic adaptations may allow some populations to persist in warmer conditions. This 
shows the importance of including intraspecific adaptations in climate change vulnerability 
assessments. In addition, in response to global climate change, the application of gene editing, 
also known as genome editing or genome engineering, has emerged as a technology to help 
organisms adapt to global climate change or mitigate climate impacts. Transforming agriculture by 
developing crops and livestock that can better withstand the effects of climate change is imperative. 
Gene editing allows precise changes to a plant's genome, speeding up the production of new crop 
varieties, including those better able to withstand the stress of a changing climate and those that 
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capture and store excess atmospheric carbon dioxide.The precision and efficiency of creating 
changes has greatly improved with the introduction of CRISPR/Cas systems, although there is 
certainly more work to be done with other gene editing techniques. 
 

 

Keywords: Biotechnology; climate change; CRISPER/Cas; drought; gene editing. 
 

1. INTRODUCTION  
 

According to the Intergovernmental Panel on 
Climate Change (IPCC) group, climate change is 
the average change or variation in temperature, 
precipitation and wind patterns over the long 
term. According to the IPCC report, climate 
change is largely caused by anthropogenic 
causes, including human-induced changes in 
land use, as well as natural forces, such as solar 
cycles, volcanic eruptions, and continental           
drift [1]. 
 
Most effects of climate change concern soil and 
water quality, temperature for pests and 
pathogens, precipitation and weeds. Research 
data showed that agriculture is responsible for 
25% of greenhouse gases and the main sources 
are methane (48%) and nitrous oxide (52%) from 
rice fields [2]. Greenhouse gases are both 
natural and man-made elements that prevent the 
reflection of radiation in the atmosphere and the 
warming of the environment. These gases are 
mainly emitted by industry and other activities, 
such as carbon dioxide (CO2), methane (CH4), 
nitrous oxide, hydrofluorocarbons (HFC) and 
sulfur dioxide (SF6). In the long term, various 
activities increase their concentration in the 
atmosphere and lead to global climate               
change [3].  
 
According to the United States Geological 
Survey, global warming is one of the aspects of 
climate change, and according to them, global 
warming is an increase in the temperature of the 
earth, which is mainly caused by an increase in 
the concentration of greenhouse gases in the 
atmosphere. Due to climate change, arable land 
is decreasing due to soil erosion, desertification 
and salinization. Drought threatens agriculture 
worldwide more than ever before. The Food and 
Agriculture Organizationof the United Nations 
(FAO) documents that between 2005 and 2015, 
drought caused USD 29 billion in direct damage 
to agriculture in developing countries [4]. In 
addition, more than 70% of the world's available 
fresh water isused for irrigation [5]. 
 
On the other hand, genetic engineering, gives 
crops a greater advantage in response to stress 
than traditional breeding. In addition,genetically 

modified soybeans, corn and cotton                     
produced for insectresistance and weed 
tolerance have made very impressive and 
dramatic progress in pest control and crop 
improvement worldwide since their first 
introduction in 1996.  
 

Climate change mitigation strategies in generalis 
immediate goal to reduce the negative impact of 
environmental problems on land and water 
bodies. For example, reducing the concentration 
of greenhouse gases that can emitted into the 
atmosphere by limiting the emission of industrial 
sewage andradioactive substances can be some. 
measures thatprotect the earth from the effects 
of climate change. In addition, climate change 
can be contained through afforestation and other 
sinks (natural absorbers and adsorbents). 
Biotechnological methods currently used for 
mitigation purposes include tissue culture, 
bioremediation, biosorption, bioleaching, 
conventional breeding, molecular marker 
breeding, genetic engineering, and genome 
editing, Carbon reduction through biofuels, 
carbon sequestration, use of inorganic fertilizers 
etc. are other processes.  
 

Hence, the purpose of this reviwe paper is give 
highlights the impact of biotechnology on climate 
change to address pressing environmental 
challenges through novel approaches that can 
operate at the scale and efficiency to describe 
the importance of biotechnology and its 
intervention in potential disasters resulting                  
from climate change to avoid irreversible 
damage. 
 

2. THE ROLE OF GENETIC VARIATION 
FOR ADAPTATION TO CLIMATE 
CHANGE  

 
Genetic diversity is the most important 
requirement for all species to survive in the long 
term and adapt to environmental changes over 
evolutionary time [6,7] .  
 
Genetic structure is very important because it 
can provide insight into the history of a 
population, and the current levels and distribution 
of genetic variation can influence the future 
success of populations [8].  
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In some combination of natural selection and 
random genetic drift, a population separated by 
geographic distance may diverge due to gene 
flow and reduced population connectivity 
(isolation by geographic distance - IBD) [9]. 
However, population differences can emerge 
when reproductive isolation develops between 
neighboring populations in different environments 
as a result of ecologically based differential 
selection from isolating environment (IBE) [10]. 
 
 Global climate change has become one of the 
greatest threats to biodiversity [11,12] .Species 
may respond to global climate change through 
local adaptation [13] , individual migration [14,15] 
range reduction or a combination of these [16] . 
 
Local adaptations have been found to be a 
traditional way for various plant species to 
respond to climate change [17,18,19,20]. 
 
In addition, projected global warming will have 
dramatic effects on mountain ecosystems [21], 
especially alpine plant communities [22]. 
Vulnerability to climate change is most often 
assessed based on projected distributional 
changes using ecological niche modeling. This 
model can predict future changes in the 
distribution of suitable climatic conditions that 
characterize the current range of the species 
[23]. An important limitation of these models, 
which can lead to incorrect predictions and 
misplaced conservation efforts, is the neglect of 
adaptation to internal climate and the resulting 
differences in population response to climate 
change [24]. Evidence of contrasting patterns of 
physiological variation in thermal tolerance 
between and within species underscores the 
importance of including within-species variation 
in ecological niche models (ENM) of climate 
adaptation [25]. However, such model 
improvements are limited by the scarcity of 
observational and experimental studies on local 
climate adaptation [26]. 
 
“To date, studies attempting to incorporate 
genetic variation into an ecological niche model 
(ENM) have mostly used a neutral marker to 
identify phylogeographic structure and create 
separate models for each genetically distinct 
population. They led to more pessimistic 
projections than conventional ENMs, predicting 
an increased risk of climate change due to the 
loss of vulnerable populations, but did not affect 
projections of range size changes at the species 
level [27,28] .These experiments are limited in 
scope because neutral markers provide 

information about the evolutionary history of 
species and barriers to gene flow, but not about 
the ability of individuals to adapt and survive 
under changing conditions. In addition, range 
shifts caused by future climate change are 
expected to result in the genetic homogenization 
of different species and the disappearance of 
historical and current population subdivisions 
[29]. 
 
Recent studies integrate genomic adaptations 
into ENM projections to identify vulnerable 
populations that need to adapt to survive future 
climate change [30,31]. However, genetic 
information related to interspecific variation in 
climate adaptation has yet to be directly 
incorporated into ENMs. To overcome these 
challenges, plant breeders began to produce 
new crop varieties that increased yield, tolerate 
abiotic stresses and improved water and nutrient 
consumption efficiency. 
 

3. ADAPTATION OF AGRICULTURE TO 
CLIMATE CHANGE THROUGH PLANT 
BREEDING  

 

In agriculture, drought can generally be defined 
as a prolonged lack of water that affects plant 
growth and survival, ultimately reducing crop 
productivity. In botany, the broadest definition of 
drought stress is the same as water deficit, which 
occurs when the rate of evaporation exceeds 
water consumption” [32]. This can be caused by 
a lack of water, but also increased salinity or 
osmotic pressure. From a molecular biology point 
of view, the first event during drought stress is 
water loss from the cell or dehydration. 
Desiccation typically triggers osmotic signals and 
hormones mainly related to abscisic acid (ABA) 
[33].  
 

“Drought resistance is determined by how 
effectively and timely the plant senses changing 
environmental conditions and combining the 
enviromentalstreesin response to reduced water 
availability. Plant breeders have identified 
physiological traits that result from the drought 
response and facilitate plant adaptation to limited 
water. Understanding the molecular and 
physiological mechanisms underlying these traits 
is important for crop improvement through 
biotechnology.  Biotechnology is a promising way 
to mitigate the negative effects of climate change 
by reducing greenhouse gases through 
biofuels[34] and carbon sequestration [35] less 
fertilizer [36]), biotic tolerance [37] and biotic 
stress [38]. 
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4. THE ROLE OF MICROBES IN CLIMATE 
CHANGE RESILIENCE  

 
Microbes are various organisms found on the 
surface of the earth. Plants themselves consist of 
many microbes found in them and in the soil 
ecosystem. Microbes areknown to perform 
various ecological functions in nature. They 
regulate the concentration of greenhouse gases 
and influence the radiative forcing. Microbiota 
can influence both positive and negative 
feedbacks on climate tolerance. Several 
microbial species play important roles in carbon 
sequestration, carbon minimization and reduction 
of greenhouse gases such as CO2, CH4 and N2O 
in the soil ecosystem [39 ]. Microbes such as 
bacteria and fungi effectively break down organic 
matter, which further stimulates global warming 
in the environment and the flow of carbon dioxide 
into the atmosphere. Microbial communities 
influence the biogeochemical cycle, nutrient 
cycling, carbon and methane cycle status in the 
atmosphere [40]. 
 
Microbial respiration is a key pathway for carbon 
dioxide efflux that promotes the natural release 
of carbon dioxide. On the other hand, 
methanotrophs play an important role as 
biological sinks that reduce methane emissions 
to the atmosphere. Microbial respiration is an 
important carbon dioxide emission pathway that 
contributes to the natural release of carbon 
dioxide.. The plant microbiome also contributes 
to global food security by determining yield and 
climate resilience. Climate change mitigation is a 
necessary measure that can be achieved 
through several means. The use of biofertilizers 
composed of microorganisms such as bacteria 
and fungi can be an effective alternative to 
chemical fertilizers, as well as the use of biofuels 
instead of fossil fuels. Soil contains many 
microorganisms. Soil microbes play important 
roles in nutrient cycling, resistance to soil-borne 
pathogens, and regulation of climate change. 
Soil contains many microorganisms. Soil 
microbes participate in the decomposition of soil 
organic matter, regulate carbon supplies and 
nutrient cycling, and facilitate plant nutrient 
assimilation [41].  
 
Modern green technologies such as biofertilizers 
composed of cyanobacteria, fungi (arbuscular 
mycorrhiza, AMF) and bacteria (plant growth-
promoting rhizobacteria, PGPR) improve and 
restoresoil fertility and ensure sustainable 
agricultural production. In addition, these 
microorganisms can reduceenergy requirements 

in the form of synthetic fertilizers and have the 
ability to alleviate stressed agricultural 
ecosystems and desert lands [42,43].   
 
Sustainable agriculture includes soil, water and 
pest management, crop selection and soil 
conservation. This practice of sustainable 
agriculture combined with biotechnology can 
increase productivity by creating new transgenic 
plants, microbes and animals [44].Cyanobacteria 
produce a number of valuable compounds such 
as ethanol, butanol, fatty acids and other organic 
acids and are promising candidates to 
continuously satisfy our energy needs. Recent 
advances in cyanobacterial genetic engineering, 
cultivation, and culture screening have enabled 
new ways to exploit the riches of these ancient 
microorganisms. Gene manipulation techniques 
are well developed for several cyanobacteria 
[45]. 
 

4.1 The Role of Cyanobacteria in Climate 
Change 

 
Cyanobacteria play an important role in 
atmospheric nitrogen fixation and carbon fixation 
and sequestration [46,47] which are essential for 
plant nutrition and soil fertility. 
 
Among nitrogen fixer cyanobacteria, Oscillatoria, 
Nostoc, Anabaena, etc., have a potential role in 
combating stress conditions in various plant 
species. 
 
In terms of carbon dioxide capture, one of the 
most promising organisms is a cyanobacterium . 
These photosynthetic bacteria also improve the 
activity and diversity of the microbial community 
through symbiotic associations [48] and in 
addition to EPS, cyanobacteria can secrete 
several acids, hormones, amino acids and 
vitamins that promote plant growth and 
development [49]. Compared to the growth of 
other plants with beneficial bacteria (PGPB), 
after their death and decomposition, 
cyanobacteria can increase the water holding 
capacity and soil biomass  .In addition, the ability 
of cyanobacteriato tolerate different salinities. 
reduces the fresh water for their cultivation, 
strengthening their values as NBS [50].  
 
4.1.1 Cyanobacteria as a source of bioenergy  
 
First and second generation biofuels use raw 
materials such as rapeseed, soybeans, 
sunflower, wheat, grass, peanuts and sesame. 
Various energy sources such as ethanol, 
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propanol, butanol and vegetable oils have been 
produced from these raw materials .However, 
energy crops used in the production of first and 
second generation biofuelscompete with 
conventional food sources for water, nutrients 
and fertile land.Therefore, the third 
generationusing microalgae has emerged as an 
alternative to biofuels to avoidcompetition 
between food crops and energy crops for 
available natural resources, and in addition, 
cyanobacteria are one of the most promising raw 
materials for the production of third generation 
biofuels  
 
Rapid growthand cultivation in suitable indoor 
bioreactors and/or non-cultivable soils gives 
cyanobacteria an advantage over plants. In 
addition, cyanobacteria show higher 
photosynthetic efficiency (~10%) compared to 
land plants (maximum efficiency ~3-4%) [51,52]. 
Blue-green algae are easier to genetically 
manipulate than other algae and are therefore 
better candidates for the production ofchemicals 
and fuels compared to eukaryotic algae. The 
genome size of cyanobacteria is relatively small 
and the genomes of several genera have been 
sequenced so far. Therefore, cyanobacteria offer 
an exceptional opportunity for genetic and 
metabolic engineering research to improve 
biomass production, which is relatively difficult to 
do with eukaryotic algae [53].  
 
Cyanobacteria contain significant amounts of 
lipids;located mainly in the thylakoids and plasma 
membranes and have greater growth and 
photosynthesis. Biofuel improvement 
ofcyanobacteria using genetic engineering has 
been attempted mainly with Synechocystis sp. 
PCC 6803 and S. elongatus PCC 7942, whose 
genomes were completely sequenced and 
established by molecular techniques [54]. 
Different fuels such as 2,3-butanediol, acetone-1-
butanol, ethylene, ethanol, fatty acids, 
isobutyraldehyde, isobutanol, 2-methyl-1-butanol 
and isoprene can be produced in cyanobacteria 
using genetic engineering. Therefore, genetically 
engineered cyanobacteria can play a crucial role 
in reducing oil dependence and CO2 emissions, 
since CO2 is directly photosynthetically linked to 
biofuels and other valuable secondary 
metabolites [55,56]. However, the use of 
cyanobacteria for biofuel production has some 
limitations. Production of valuable chemicals in 
photoautotrophic cyanobacteria is always lower 
than in sugar-using systems such as S. 
cerevisiae and E. coli [57]. 
 

In general, a photoautotrophic cyanobacterial 
body can only produce~100 mg of biochemicals 
per liter of cell culture [58] which istoo little for a 
commercially viable application. “Theoretical 
yields for the production of several chemicals 
under heterotrophic and autotrophic growth 
conditions were calculated for the cyanobacterial 
body to explain the limiting factors of the 
cyanobacterial metabolic network [59]. But the 
study suggests that the low performance is not 
due to the topology of the photosynthetic 
metabolic networks of the cyanobacteria. 
Therefore, it is important to optimize the natural 
biological framework to increase the yield of 
cyanobacteria-derived biochemicals. In recent 
years, several groups have emphasized the 
construction, design, and expression 
ofbiosynthetic pathways and the development of 
cyanobacterial metabolic engineering tools that 
can lead to economic viability by increasing the 
production of existing and new chemicals and 
biofuels [60,61 ,63,]. 
 
4.1.2 Cyanobacteria as biofertilizer 

 
The production of inorganic nitrogen fertilizers is 
very expensive because it uses a lot of fossil fuel 
energy. This required the development of 
alternative, sustainable and cost-effective 
bioavailable nitrogen resources that can 
sustainably meet the nitrogen demand of 
agriculture[64] .To this end, biological systems 
capable of fixing atmospheric nitrogen have been 
identified[65,66]. 
 
Biological N fixation produces ~2 × 102 Mt N per 
year.According to Metting  study  the total 
nitrogen fixation can be ~90 kg N ha−1 y−1. 
Symbiotic and free-living eubacteria, including 
cyanobacteria, are two groups of nitrogen-fixing 
organisms”. “Free-living cyanobacteria fix 10 kgN 
ha−1a−1, but ~10–30 kgN ha−1 per year is fixed 
by dense cyanobacterial worms [67,68]. 
Therefore, cyanobacteria are an important 
component in naturally available biofertilizers 
[69]. “Rice production in tropical countries 
depends mainly on biological N2 fixation by 
cyanobacteria, which is a natural part of rice 
fields. In these cultivated agricultural 
systems,~32 Tg of N are fixed annually by 
biological N-fixers , and cyanobacteria add 
approximately 20–30 kg of N fixedha−1 to rice 
fields along with organic matter [70]. 
Cyanobacteria also form symbiotic associations 
with various photosynthetic and non-
photosynthetic organisms such as algae, fungi, 
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Table 1.List of nitrogen-fixing cyanobacteria important for their application in biofertilizer 
industry (adapted from Vaishampayan et al., 2001) 

 

Filamentous  Unicellular 

Heterocytous Non- heterocytous 

Anabaena, Anabaenosis, 
Aulosira, 
Calothrix, Camptylonema, 
Chlorogloea, 
Chlorogloeopsis, 
Cylindrospermum, 
Fischerella, Gloeotrichia, 
Haplosiphon, 
Mastigocladus, Nodularia, 
Nostoc, 
Nostochopsis, Rivularia, 
Scytonema, 
Scytonematopsis, Stigonema 
Tolypothrix, Westiella, 
Westiellopsis, Wollea 

Lyngbya, Microcoleus, 
Chthonoplates, 
Myxosarcina, Oscillatoria, 
Plectonema Boryanum, 
Pseudoanabaena, 
Schizothrix, 
Trichodesmium 

Aphanothecece, 
Chroococcidiopsis, 
Dermocarpa, 
Gloeocapsa 
Myxosarcina 
Pleurocapsa 
Synechococcus 
XEnococus 

 
diatoms, hornworts, liverworts, mosses, 
pteridophytesandangiosperms [71,72]. 
 
Lists of possible cyanobacteria that can be used 
as biofertilizers in agricultural fields[ are indicated 
Table 1.Mixed cultures of free-living forms of 
cyanobacteria are used to propagate rice fields 
[73,74] Significant increases in grain yield, 
biomass and nutritive value of rice can be 
achieved by inoculating Anabaena doliolum and 
A. fertilissima in rice fields with or without urea” 
[75] (Dubey and Rai, 1995).  Several species of 
cyanobacteria such as Anabaena iyengarii var. 
considered, A. fertilissima, Nostoc community, N. 
ellipsosporum, N. linckia and Gloeotrichianatans 
can contribute to the productivity of rice fields in 
Chile [76] (Pereira et al., 2009).  
 
In addition to rice yield, cyanobacterial 
biofertilization can also improve wheat yield, 
shoot/root length and dry weight [77,78,79]. Soil 
inoculation with different cyanobacterial strains 
such as Nostoc carneum, N.piscinale, Anabaena 
doliolum and A.torulosaresults in significantly 
higher acetylene-reducing activity [80] . 
 
Moreover, acetylene reducing activity is highest 
in harvest phase when wheat field is inoculated 
withAnabaena-serratia biofilm along with rock 
phosphate [81].Biofertilizers based on 
cyanobacteriaareone third more cost-effective 
than chemical fertilizers [82] In addition to 
nitrogen fixation, cyanobacteria also contribute to 
the mobilization of inorganic phosphates through 
the secretion of organic acids and extracellular 
phosphatases [83]. Cyanobacteria solubilize and 

mobilize insoluble organic phosphatase and 
improve phosphorus availability to crops  . The 
humus content created after the death and 
decomposition of cyanobacteria creates strong 
reducing conditions in the soil, which improvesoil 
structure and fertility [84]. 
 
Various cyanobacterial strains can produce plant 
growth hormones and siderophores, and 
therefore cyanobacteria can affect crop 
development and productivity [85,86]. EPS 
secreted by cyanobacteria inducessoil 
aggregation. items that improvesoil structure and 
fertility by increasing accumulation. Together, 
these findings confirm the importance of 
cyanobacteria as biofertilizers, and methods 
have been developed for their cultivation and use 
in the fertilizer industry [87,88]. 
 
4.1.3 The role of myco-biotechnology in 

climate change 
 
Mycobiotechnology is the use of fungi to create 
various products. These methods use fungi to 
restore damaged ecology that endo- and 
ectomycorrhizal symbiotic fungiwith 
actinomycetes have been used as inoculants to 
restore degraded forests. .Mycorestoration tries 
to use mushrooms as an aid in the restoration of 
an ecologically weakened environment. Whether 
the environment has been damaged by a man-
made or natural disaster, saprophytic and 
mycorrhizal fungi can helpit recover. 
Afforestation would indirectly improve product 
safety and food security, as forests create a 
microclimate that can improve availability.  
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Fungal applications of biotechnology, called 
mycobiotechnology, are part of a broader trend 
of using living systems to solve environmental 
problems and restore degraded ecosystems. 
 
Various fungal species are generally 
distinguished by their biochemical, physiological 
and metabolic capacities to metabolize or 
degrade various hazardous or persistent 
chemicals .Myco-remediation could be one of the 
ideal strategies to clean the contaminated soil 
and water. Myco-remediation is economically 
efficient and ecological sound strategy to counter 
the escalating crisis of aquatic and terrestrial 
pollution. The advantages of fungi are mainly due 
to robust growth, immense hyphal network, 
production of multipurpose extracellular 
enzymes, and increased surface area to volume 
ratio, confrontation capabilities towards complex 
pollutants, adaptability to fluctuating pH, 
temperature, and having metal-binding proteins 
[89 ]. 
 

5. INCREASING THE UPTAKE OF 
CARBON DIOXIDE OF ORGANISMS BY 
GENETIC ENGINEERING  
 

Plants, certain bacteria and algae continuously 
use photosynthesis to convert sunlight, water 
and atmospheric carbon dioxide (CO2) into most 
of our food, furniture and fuel [90] .However, this 
process has become more complicated over 
time. . Rubisco is an enzyme that transforms 
CO2 into organic molecules. In turn,slow uptake 
of CO limits the expansion of many plants, 
including crops such as rice and wheat [91]. 
However, some organisms have developed ways 
to concentrate carbon dioxide around Rubisco, 
allowing the enzyme to work faster [92]. 
Introducing such carbon-concentrating 
mechanisms to crops can increase yields by 60% 
while reducing the need for water and fertilizers 
[93]. The simplest understood mechanism of 
carbon concentration isthe mechanism found in 
bacteria,predicted in the protein structure of the 
so-called carboxysome, which contains Rubisco 
and other enzymes involved in carbon fixation. 

This species actively imports carbon in the form 
of bicarbonate (HCO3-), which diffuses into the 
carboxysome and is converted to CO2. Thehigh 
CO2 concentration achieved in the carboxysome 
maximizes Rubisco activityand thus increases 
total CO2 absorption (Fig. 1). 
 
A. Halothiobacilusneapolitanus has 
carboxysome-based carbon concentration 
mechanisms. The cell imports carbon dioxide as 
bicarbonate (HCO3-), which diffuses into the 
carboxysome.Previous work succeeded in 
assembling a carboxysome-like structure in the 
non-photosynthetic model bacterium Escherichia 
coli [94]. However, these cells required a lot of 
carbon dioxide to grow, indicating that additional 
components are needed to concentrate the 
carbon dioxide. Now in eLife, David Savage, Ron 
Milo and colleagues, including first author 
AviFlamholz, report how they require functional 
carbon concentration mechanisms in an 
organism that lacks one [95].  

 
The team based at the University of California at 
Berkeley, the Weizmann Institute of Science and 
the Max Planck Institute for Molecular Plant 
Physiology chose the bacterium 
Halothiobacilusneapolitanus as the genetic donor 
for their experiment. The carboxysomes of this 
species are simple and well studied. In particular, 
Savgeabd workers previously identified 20 
candidate genes likely to be necessary for the 
correct functioning of these structures [96]. 
 
As a receiving species, Flamholzet al.,2020 
chose E. coli, which they genetically engineered 
to rely on Rubisco for growth. Without the carbon 
concentration mechanism, this strain could not 
grow in ambient air, but required an additional 
concentration of carbon dioxide approximately 
100 times greater than that in the atmosphere. 
Hoping to reintroduce a functional carbon 
concentration mechanism, the team transferred 
20 candidate genes to H. neapolitanusE. coli 
strain. It is not surprising that the strain was 
initially unable to grow in ambient carbon dioxide, 
as simply adding genes is often not enough to

 

 
 

Fig. 1. Engineering a carbon-concentration into E.coli 
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form a complex pathway to a new organism [97] 
.However, Flamholzet et al. could use genetically 
modified E. coli strain - its growth rateis 
proportional to Rubisco activity. This allowed the 
team to use a natural process experiment to 
identify mutations that cause the carbon 
concentration mechanism to malfunction, thereby 
increasing Rubisco activity. The experiment 
revealed a mutant that can grow at ambient CO2 
levels, apparently by regulating the expression 
level of proteins that cooperate in the carbon 
concentration process.This result indicated that 
the carboxysome-based carbon concentration 
mechanism of H. neapolitanus was successfully 
restored in their E. coli strain.  
 
To further support this conclusion, electron 
microscopy was used to observecarboxysome-
like structures in the engineered E. coli strain. To 
ensure the functionality of these constructs, they 
individually knocked out several genes known to 
be important for carboxysome function in the 
original host. These mutations had the same 
effect on E. coli than in H. neapolitanus - cells no 
longer grew at ambient CO2 levels - confirming 
that the carboxysome functioned in the 
engineered strain as it did in the original 
host.These results of Flamholzet et al.2020 show 
that the carboxysome-based carbon 
concentration mechanism is transferable and 
functional in another organism, providing a 
blueprint that paves the way for engineered 
plants with increased carbon absorption and thus 
higher yields. 
 

6. THE ROLE OF GENE EDITING IN 
COMBATING CLIMATE CHANGE 

 
Climate change is a major threat to the 
environment in the long term because it affects 
agriculture, biodiversity, human society and 
almost every part of our world. The first cause of 
climate change is the addition of greenhouse 
gases caused by humans to the atmosphere. 
Due to these human-caused emissions, the 
average temperature of the planet has increased 
by almost 1 °C since 1850 [98,99] .In response 
to the challenges of global climate change, gene 
editing, also known as genome editinghas 
emerged as a technology to help organisms 
adapt to global climate change or mitigate the 
effects of climate change. in agriculture, 
developing crops and livestock that can better 
withstand the effects of climate change.  

 
Gene editing can be a method to invent DNA 
editing at precise genomic locations. These 

modifications can result in the deletion or 
destruction of one or more genes without the 
permanent addition of foreign DNA. Alternatively, 
genes from the genome of the organism or other 
organisms are inserted into precise locations in 
the genome to correct the trait. Transcription 
activator-like effector nucleases (TALEN), zinc 
finger nucleases (ZFN) and CRISPR/Cas 
systems have been used to achieve precise 
gene editing [100,101].  
 
The precision and efficiency of creating changes 
has greatly improved with the introduction of 
CRISPR/Cas systems, although there is certainly 
more work to be done with other gene editing 
techniques. Because gene editing programs 
make it possible to make precise changes to a 
plant's genome and accelerate the production of 
new varieties of organisms, including those that 
can better withstand the stress of a changing 
climate and those that capture and store excess 
atmospheric carbon dioxide.  
 

6.1 Roles of Gene Editing in Abiotic 
Stress 

 
Future crops must be highly resistant to extreme 
heat and variable rainfall. In some species, such 
as rice, genes that confer tolerance to flooding 
have been identified at specific junctions, and 
once the genetic basis of tolerance is 
understood, gene editing can be used to 
propagate the trait more widely. However, the 
tolerance of most plants to drought, heat and 
flooding is due to the influence of several genes 
[102] .Basic research in species such as 
sorghum and millet helps us understand how 
these genes work [103].  
 

6.2 Roles of Gene Editing in Resistance 
to Pests and Pathogens 

 
Increased abiotic stress makes plants more 
susceptible to biotic stresses such as pathogens 
caused by insects, fungi and bacteria [104] .In 
addition, warmer temperatures increase the 
abundance of some pathogens and change their 
geographic distribution. Crop varieties resistant 
to fungal and bacterial pathogens are usually 
developed by crossing resistance genes from 
non-elite varieties or wild relatives to commercial 
varieties [105]. 
 
The hybrids are then crossed with a susceptible 
parent for several generations to eventually 
produce disease-resistant elite germplasm. Such 
breeding programs require significant time - up to 
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ten years for some species - which is 
dangerously slow due to rapid climate change. In 
just one year, gene editing has conferred 
tolerance to fungal pathogens in wheat [106] and 
bacterial pathogens in rice [107] by altering 
genes important for pathogen resistance and 
response.  
 

6.3 Roles of gene editing for re-
domestication 

 

Considerably few plant species provide the food 
that sustains humanity. During the process of 
domestication, changes in the expression and 
activity of a handful of regulatory genes led to a 
remarkable physical transformation of wild stem 
cells into the high-yielding modern crops we rely 
on for food [108,109].  
 

As the climate changes, we benefit from 
breeding new species that can withstand 
extreme weather conditions or thrive in marginal 
areas. Gene editing can greatly accelerate the 
domestication of these species by changing key 
regulatory genes to improve their productivity. 
One candidate for domestication is tef, a cereal 
crop from Ethiopia and Eritrea. Loss of seeds 
inhibits productivity. 
 

7. ROLES OF GENETIC ENGINEERING IN 
CARBON SEQUESTRATION 

 

Plants naturally bind carbon from the atmosphere 
and fix it in the above and below ground parts of 
the plant. Unfortunately, this carbon storage is 
often temporary. When plants die and 
decompose, carbon is released back into the 
atmosphere[110] .Gene editing could be used to 
redirect captured carbon into compounds more 
resistant to degradation, such as suberin, a 
carbon-rich compound found in the roots of many 
plants [111]. 
 

In addition, root architecture could be changed to 
increase underground biomass and thus 
increase the amount of carbon stored [112] 
.Even if there is a very small increase in the 
amount of carbon stored in the soil by larger row 
crops, millions of tons of carbon can be washed 
out of the atmosphere [113] . 
 

All plants carry out photosynthesis to capture 
carbon dioxide from the atmosphere, but some 
plants have developed much more efficient 
photosynthetic mechanisms. So-called C4 plants, 
such as corn and sugarcane, are up to 50% 
more efficient photosynthetically than C3 plants, 
such as rice and wheat [114]  

8. THE ROLE OF SYNTHETIC BIOLOGY 
IN REDUCING ATMOSPHERIC 
GREENHOUSE GASES 

 
prospects and challengesofsynthetic biology 
uses the concept of engineering design to 
engineer, modify, and even resynthesize target 
organisms at the molecular level, creating new 
organisms or transforming existing organisms 
[115].This process is usually driven by specific 
biological functions, including mining, designing, 
building and standardizing biological parts, 
devices, and genetic circuits, or sometimes 
complete chemical de novo DNA synthesis, 
building parts, devices, and circuits                      
with new functions, forming .assembled,               
tested and optimized in networks and platform 
cells. 

 
Enabling technologies related to synthetic 
biology generally include DNA sequencing, DNA 
synthesis, gene editing, genome design, 
synthesis and assembly, design of biological 
parts (including new protein design), gene circuit 
design, computational and biological informatics, 
data processing and modeling. Using these 
technologies, it is possible to study functional 
genes and make cheap and efficient computer 
simulations of the design, construction and 
metabolism of these organisms to enable the 
practical development and application of 
synthetic biology for various purposes, including 
climate change mitigation. 

 
9. CONCLUSION  
 
The long residence time of carbon dioxide in the 
atmosphere creates an urgent need to include 
atmospheric carbon reduction in carbon control 
strategies. Gene editing, genetic engineering and 
synthetic biology can provide powerful 
approaches to reduce atmospheric carbon and 
increase new opportunities. Possibilities include 
converting carbon dioxide from respiration into 
stable carbonate, engineering plants with a 
higher root-to-shoot ratio, creating plants capable 
of self-fertilization, using genetic engineering to 
trap carbon dioxide in organisms, editing genetic 
engineering to invent DNA modifications 
precisely. genomic locations, and reengineering 
of biological elements not normally found in 
nature. However, several important 
environmental and social challenges must be 
faced and resolved before such an application 
can be evaluated, implemented and            
deployed. 
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