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Abstract: Recently, nonlinear fractional models have become increasingly important for describing
phenomena occurring in science and engineering fields, especially those including symmetric kernels.
In the current article, we examine two reliable methods for solving fractional coupled nonlinear
Schrödinger models. These methods are known as the Sardar-subequation technique (SSET) and
the improved generalized tanh-function technique (IGTHFT). Numerous novel soliton solutions are
computed using different formats, such as periodic, bell-shaped, dark, and combination single bright
along with kink, periodic, and single soliton solutions. Additionally, single solitary wave, multi-wave,
and periodic kink combined solutions are evaluated. The behavioral traits of the retrieved solutions
are illustrated by certain distinctive two-dimensional, three-dimensional, and contour graphs. The
results are encouraging, since they show that the suggested methods are trustworthy, consistent,
and efficient in finding accurate solutions to the various challenging nonlinear problems that have
recently surfaced in applied sciences, engineering, and nonlinear optics.

Keywords: multiple-wave solutions; coupled nonlinear fractional-order Schrödinger model;
Sardar-subequation technique; improved generalized tanh-function technique

MSC: 26A48; 26A51; 33B10; 39A12; 39B62

1. Introduction

Nonlinear partial differential equations (NLPDEs) find applications in a myriad of sci-
entific and engineering fields, including atmospheric science, climate modeling, combustion
dynamics, population dynamics, pattern formation, material science, seismic wave propa-
gation, plasma physics, astrophysics, and biological systems modeling. These equations
are employed to model complex phenomena such as turbulent flows, chemical reactions,
wave interactions, and nonlinear wave propagation in various mediums. They are essential
for understanding and predicting the behavior of complex systems in both natural and
engineered environments. However, due to the inherent complexity of NLPDEs [1–6],
finding exact solutions using a single technique is often challenging. To address this,
several reliable methods have been proposed, for instance, the modified exp(−ϕ(ω))-
expansion function [7,8], the sin-Gordon-expansion [9], the G′

G2 -expansion function [10], the
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first integral approach [11], and the Hirota bilinear approach [12,13]. Additionally, various
strategies have been explored for deriving lump solutions [14]. Optical solitons, renowned
for their capacity to transmit waves over extensive distances without dispersion, represent
a significant research domain within optics and optoelectronics [15]. These solitons have
revolutionized the telecom industry, leading to advancements in high-speed communi-
cation systems [16–21]. As a result, fractional-order NLPDEs have garnered attention in
recent studies, particularly in optics and other applied sciences, owing to their potential
applications in modeling highly nonlinear phenomena [22–24]. Fractional-order deriva-
tives offer advantages over integer derivatives, providing more accurate mathematical
and physical models for various technical issues [25–27]. Consequently, fractional NLSE
models have become essential for understanding soliton dynamics in optical fibers, with
various solution schemes developed over the past two decades [28–39]. The motivation
behind this study stems from the growing need to address complex nonlinear phenomena
across diverse scientific disciplines, particularly in optics and applied sciences. The main
goal is to employ advanced techniques to solve fractionally coupled nonlinear Schrödinger
models and extract multiple-wave solutions. The Sardar-subequation technique (SSET)
is a powerful method employed in the realm of solving nonlinear differential equations.
With its efficacy demonstrated across various disciplines, numerous researchers have
leveraged SSET to tackle complex problems and unveil novel solutions. For instance,
Ref. [40] utilized SSET to derive new solitary wave solutions for the (3+1)-dimensional
Wazwaz–Benjamin–Bona–Mahony equations, showcasing its effectiveness in handling
intricate systems. Similarly, Ref. [41] employed SSET to explore new wave solutions for
a nonlinear Landau–Ginzburg–Higgs equation, revealing diverse types of solitons such
as bright and dark solitons, singular periodic solitons, and hybrid solitons. Moreover,
Ref. [42] extended the application of SSET to the (4+1)-dimensional fractional-order Fokas
equation, demonstrating its capability in generating various soliton solutions. Ref. [43]
utilized SSET to obtain exact wave solutions for a complex three-coupled Maccari’s system,
further highlighting its versatility. Additionally, research in [44] has integrated SSET with
conformable derivatives to investigate solitary solutions for the conformable fractional
Klein–Gordon equation with high-order non-linearity. Overall, the Sardar-subequation
technique (SSET) stands as a valuable tool in the arsenal of techniques for solving nonlinear
differential equations, offering insights into a wide range of physical phenomena and
mathematical models. The generalized tanh-function technique has emerged as a versatile
method for solving a variety of fractional differential equations, offering insights into the
dynamics of complex systems. Researchers have applied the GTHFT to address significant
equations across different domains. For instance, Ref. [45] utilized the GTHFT to tackle the
time-fractional Sharma–Tasso–Olver equation and the space-time fractional Kowerteg–de
Vries–Burgers equations, showcasing its efficacy in handling both time- and space-fractional
derivatives. Similarly, Ref. [46] employed the tanh-function technique to solve the time-
fractional modified Liouville and mRLW equations, unraveling the dynamical behavior of
traveling wave solutions. Ref. [47] further advanced the method, refining and modifying
the tanh-function approach to uncover exact traveling wave solutions for a family of 3D
fractional Wazwaz–Benjamin–Bona–Mahony equations, demonstrating its adaptability and
precision. Moreover, Ref. [48] extended the tanh function approach to address nonlinear
time-fractional Klein–Gordon and Sine–Gordon equations, revealing new traveling wave
solutions. Through these applications, the generalized tanh-function technique continues
to prove its utility in unraveling the intricate dynamics of fractional differential equations,
paving the way for deeper understanding and analysis in various scientific disciplines. The
novel aspect of this study is the application of both SSET and IGTHFT to derive a variety
of soliton solutions. These solutions encompass periodic, bell-shaped, dark, and composite
single bright solitons, along with kink, periodic, and single soliton solutions. Additionally,
the exploration of single solitary wave, multi-wave, and periodic kink combined solutions
adds further depth to the analysis. Through the illustration of distinct behavioral traits
using two-dimensional, three-dimensional, and contour graphs, this study contributes
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valuable insights into the accurate and efficient solutions to challenging nonlinear problems
encountered in applied sciences, engineering, and nonlinear optics.

Consider the coupled nonlinear fractional-order Schrödinger equations

iDδ
t Ξ1 + D2γ

x Ξ1 + α
(
|Ξ1|2 + β|Ξ2|2

)
Ξ1 = 0,

iDδ
t Ξ2 + D2γ

x Ξ2 + α
(
|Ξ1|2 + β|Ξ2|2

)
Ξ2 = 0, (1)

where x ∈ [−∞, ∞], t > 0, and the behavior of polarized waves within nonlinear fiber
optics, with constraints 0 < δ, γ ≤ 1. The functions Ξ1(x, t) and Ξ2(x, t) intricately depict
the dynamic range of these waves in relation to t and x. Parameters α and β are real
and non-zero integers. Our study employs two distinct methodologies: enhancements
to the generalized tanh-function technique and the Sardar-subequation technique. These
methodologies are applied under various conditions to deduce soliton and solitary wave
solutions for the given model.

The paper is organized as follows. Section 2 covers the basics of conformable fractional
derivatives. Section 3 introduces the SSET and IGTHFT techniques. Results and discussions
are provided in Section 4, while concluding remarks are presented in Section 5.

2. Conformable Derivative

Fractional-order derivatives have attracted significant attention from researchers due
to their broad applications across diverse scientific fields. Various fractional derivative op-
erators, including the Caputo–Fabrizio, Caputo, and Riemann–Liouville fractional deriva-
tives, have been developed to provide innovative approaches for modeling intricate phe-
nomena and accurately capturing memory effects and non-local behavior. These operators
play crucial roles in classical dynamics, banking, discrete mathematics, microbiology, plas-
tics research, elasticity studies, and numerous other scientific domains. Their capability to
describe systems with fractional dimensions and represent non-local effects makes them
indispensable tools for comprehending and analyzing a wide range of physical processes.
Moreover, the conformable derivative, introduced by Khalil et al. in 2014 [49], stands out
as a promising addition to fractional calculus, offering simplified and efficient solutions for
various mathematical and scientific challenges.

Definition 1. Given a function p : [0, ∞] → R, the conformable fractional derivative of p of order
δ is defined by [49]

Tδ(p(t)) = lim
ω→0

p
(
t + ωt1−δ

)
− p(t)

ω
, 0 < δ ≤ 1. (2)

Definition 2. Let δ ∈ (n, n + 1] and p be n−differentiable at t, where t > 0. Then the conformable
fractional derivative for p of order δ is defined as [49]

Tδ(p)(t) = lim
ω→0

p(⌈δ⌉−1)
(

t + ωt(⌈δ⌉−δ)
)
− p(⌈δ⌉−1)(t)

ω
, (3)

where ⌈δ⌉ is the smallest integer greater than or equal to δ.

Properties 1. Some Properties of Conformable Fractional Derivative [49]
Let δ ∈ (0, 1], a ∈ R and Θ, Σ are δ − differentiable at point t > 0, then:

1. Tδ(a1Θ + a2Σ) = a1Tδ(Θ) + a2Tδ(Σ), for all a1, a2 ∈ R.
2. Tδ(ta) = ata−δ, for all a ∈ R.
3. Tδ(Θ(t)) = 0, if Θ(t) is constant function.
4. Tδ(Θ)(t) = t1−δ dΘ

dt (t).
5. Tδ(sin at) = at1−δ cos at.
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6. Tδ(cos at) = −at1−δ sin at.
7. Tδ

(
eat) = at1−δeat.

Theorem 1. Assume Θ, Σ : (0, ∞) → Q, 0 < δ ≤ 1 are two differentiable functions, then the
following chain rule holds:

Tδ(Θ ◦ Σ)(t) = t(1−δ)
(
Σ(t)

)(δ−2)Σ′(t)Tδ

(
Θ(t)

)
|t=Θ(t). (4)

3. Analytical Investigation

The main aim of this section is to gather a multitude of solutions for the models
presented in this study. This is accomplished by substituting the following complex wave
transformations for solving Equation (1):

Ξ1(x, t) = φ1(ξ)eiϖ, (5)

Ξ2(x, t) = φ2(ξ)eiϖ, (6)

and

ξ = n
(

xγ

γ
− b

tδ

δ

)
, ϖ = −σ

xγ

γ
+ ω

tδ

δ
+ ϑ0,

where n, σ and ω represent real constants, while ϑ0 denotes an arbitrary constant. To obtain
the real and imaginary parts of Equation (1), the complex wave transformations (5) and (6)
are substituted into (1).

n2 φ′′
1 + αφ3

1 + αβφ2
2 φ1 −

(
σ2 + ω

)
φ1 = 0,

n2 φ′′
2 + αφ3

2 + αβφ2
1 φ2 −

(
σ2 + ω

)
φ2 = 0, (7)

and
d = −2σ, (8)

φ2 = f φ1. (9)

Then (7), becomes

n2 φ′′
1 +

(
α + αβ f 2

)
φ3

1 −
(

σ2 + ω
)

φ1 = 0. (10)

3.1. Application of the SSET

Consider the solution of Equation (10), as

φ1(ξ) =
N

∑
l=0

ΩlΦ
1(ξ). (11)

In this context, the coefficients required for solving are denoted by Ωl , l = 0, 1, 2, . . . , N,
and Φ(ξ) satisfies the specified ordinary differential equation.

Φ′(ξ) =
√

ρ + hΦ2(ξ) + Φ4(ξ), (12)

where h and ρ stand for real constants awaiting evaluation, while the value of N is ascer-
tained by applying the homogeneous balancing principle. Balancing the terms φ′′

1 and φ3
1

of Equation (10), we find N = 1. Thus, Equation (11) is converted into:

φ1(ξ) = Ω0 + Ω1Φ(ξ). (13)
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To proceed, differentiate Equation (13) twice and substitute it into Equation (10). This
process yields a set of algebraic polynomials. The solutions to these polynomials, obtained
using Mathematica software, are as follows:{

σ → −
√

hn2 − ω, Ω0 → 0, Ω1 → −
√

2n√
−α(β f 2 + 1)

}
. (14)

Using the solution set, we derive the following solutions.
Case-1 If h, ρ < 0, we have

φ1,1(x, t) = −

√
6n
√
− amn

g sec
(√

3
√
− a

g

(
nxγ

γ − btδ

δ

))
√
−α(β f 2 + 1)

, (15)

or

φ1,2(x, t) = −

√
2n

√
−hmn csc

(√
−hn

(
xγ

γ − btδ

δ

))
√
−α(β f 2 + 1)

. (16)

Case-2
If h > 0 and ρ = 0, we obtain

φ1,3(x, t) = −

√
2n

√
−hmn sec h

(√
hn
(

xγ

γ − btδ

δ

))
√
−α(β f 2 + 1)

, (17)

or

φ1,4(x, t) = −

√
2n

√
−hmn csc h

(√
hn
(

xγ

γ − btδ

δ

))
√
−α(β f 2 + 1)

. (18)

Case-3
If h < 0 and ρ = h2

4d , we obtain

φ1,5(x, t) = −

√
−hn tanh

(√
−hn

(
xγ

γ − btδ
δ

)
√

2

)
√
−α(β f 2 + 1)

, (19)

or

φ1,6(x, t) = −

√
−hn coth

(√
−hn

(
xγ

γ − btδ
δ

)
√

2

)
√
−α(β f 2 + 1)

, (20)

or

φ1,7(x, t) = −

√
2n

(√
−h tanh

(√
2
√
−hn

(
xγ

γ − btδ
δ

))
√

2
+ i

√
mn sec h

(√
2
√
−hn

(
xγ

γ − btδ

δ

)))
√
−α(β f 2 + 1)

, (21)

or

φ1,8(x, t) = −

√
2n

(√
−h coth

(√
2
√
−hn

(
xγ

γ − btδ
δ

))
√

2
+ i

√
mn csc h

(√
2
√
−hn

(
xγ

γ − btδ

δ

)))
√
−α(β f 2 + 1)

, (22)
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or

φ1,9(x, t) = −

√
2n


√
−b tanh

√
−bn

(
xγ
γ − btδ

δ

)
2
√

2


2
√

2
+ i

√
mn coth

(√
−bn

(
xγ

γ − btδ
δ

)
2
√

2

)
√
−α(β f 2 + 1)

. (23)

Case-4
If h > 0 and ρ = h2

4d , we have

φ1,10(x, t) = −

√
−bn tan

(√
hn
(

xγ

γ − btδ
δ

)
√

2

)
√
−α(β f 2 + 1)

, (24)

or

φ1,11(x, t) = −

√
−bn cot

(√
hn
(

xγ

γ − btδ
δ

)
√

2

)
√
−α(β f 2 + 1)

, (25)

or

φ1,12(x, t) = −

√
−bn

(
tan
(√

2
√

hn
(

xγ

γ − btδ

δ

))
+ sec

(√
2
√

hn
(

xγ

γ − btδ

δ

)))
√
−α(β f 2 + 1)

, (26)

or

φ1,13(x, t) = −

√
−bn

(
cot
(√

2
√

hn
(

xγ

γ − btδ

δ

))
+ csc

(√
2
√

hn
(

xγ

γ − btδ

δ

)))
√
−α(β f 2 + 1)

, (27)

or

φ1,14(x, t) = −

√
hn

(
tan

(√
hn
(

xγ

γ − btδ
δ

)
2
√

2

)
+ cot

(√
hn
(

xγ

γ − btδ
δ

)
2
√

2

))
2
√
−α(β f 2 + 1)

. (28)

3.2. Application of the IGTHFT

In this context, the solution of Equation (10) is as follows:

φ1(ξ) = p0 +
N

∑
r=1

prΘr(ξ) +
N

∑
r=1

qr

Θr(ξ)
, (29)

where qr and pr, with r = 0, 1, 2, · · · , N, denote the coefficients essential for the solution,
while Θ(ξ) adheres to the prescribed Riccati differential equation.

Θ′(ξ) = Θ2(ξ) + v, (30)

where v represents a constant that determines the value of N. We utilize the homogeneous
balancing principle to determine N. Balancing the terms φ′′

1 and φ3
1 of Equation (10), we

find N = 1. Thus, Equation (11) is transformed into
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φ1(ξ) = p0 + p1Θ(ξ) +
q1

Θ(ξ)
. (31)

To proceed, differentiate Equation (31) twice and substitute the desired values into
Equation (10). This process yields a set of algebraic polynomials. The outcomes derived
from solving these polynomials with Mathematica software are as follows:

Set-1

{
p0 → 0, p1 → −

√
2n√

−α(β f 2 + 1)
, q1 → −

√
2nv√

−α(β f 2 + 1)
, ω → −4n2v − σ2

}
. (32)

According to the solution set, we have the following solutions.
Case-1
If µ < 0, we obtain

φ2,1(x, t) =

2
√

3nv coth

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√−µ

√
−α(β f 2 + 1)

+

√−µn tanh

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

, (33)

or

φ2,2(x, t) =

2
√

3nv tanh

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√−µ

√
−α(β f 2 + 1)

+

√−µn coth

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

. (34)

Case-2
If µ = 0, we obtain

φ2,3(x, t) =
2
√

3√
−α(β f 2 + 1)

(
xγ

γ − btδ

δ

) −
n2v
(

xγ

γ − btδ

δ

)
√

3
√
−α(β f 2 + 1)

. (35)

Case-3
If µ > 0, we have

φ2,4(x, t) =

2
√

3nv coth

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

µ
√
−α(β f 2 + 1)

+

√
µn tanh

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

, (36)

or

φ2,5(x, t) =

2
√

3nv tanh

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

µ
√
−α(β f 2 + 1)

+

√
µn coth

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

. (37)

Set-2

{
p0 → 0, p1 →

√
2n√

−α(β f 2 + 1)
, q1 →

√
2nv√

−α(β f 2 + 1)
, ω → −4n2v − σ2

}
. (38)

According to the solution set, we obtain the following solutions.
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Case-1
If µ < 0, we obtain

φ2,6(x, t) = −
2
√

3nv coth

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√−µ

√
−α(β f 2 + 1)

−

√−µn tanh

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

, (39)

or

φ2,7(x, t) = −
2
√

3nv tanh

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√−µ

√
−α(β f 2 + 1)

−

√−µn coth

(√−µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

. (40)

Case-2
If µ = 0, we have

φ2,8(x, t) = − 2
√

3√
−α(β f 2 + 1)

(
xγ

γ − btδ

δ

) +
n2v
(

xγ

γ − btδ

δ

)
√

3
√
−α(β f 2 + 1)

. (41)

Case-3
If µ > 0, we obtain

φ2,9(x, t) = −
2
√

3nv coth

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

µ
√
−α(β f 2 + 1)

−

√
µn tanh

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

, (42)

or

φ2,10(x, t) = −
2
√

3nv tanh

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

µ
√
−α(β f 2 + 1)

−

√
µn coth

(√
µn
(

xγ

γ − btδ
δ

)
√

6

)
√

3
√
−α(β f 2 + 1)

. (43)

4. Results and Discussions

This section demonstrates the uniqueness and importance of our research by metic-
ulously comparing our obtained results with previously established findings. Notably,
Tang and Chen introduced the complete linear discriminate scheme method for classifying
single traveling wave solutions, while Wang and Wang utilized the fractional-order Riccati
approach and the fractional-order dual-function method. In this study, we extend these
methodologies by employing the SSRT and IGTHFT. A detailed scrutiny of these prior
investigations underscores the uniqueness of our results, which have not been documented
in the previous literature. These novel findings, distinctly labeled, represent significant
contributions to the field. Furthermore, we posit that our derived solutions offer valuable
insights for understanding various physical phenomena.

The graphical representations provided in Figures 1–14 offer a comprehensive overview
of the diverse types of solutions derived from the equations detailed in the text. We verify
that all obtained soliton solutions satisfy Equation (1). Figure 1 illustrates the bright soliton
solution derived from Equation (15), showcasing the localized, coherent wave packets
characteristic of bright solitons. Figures 2 and 3 depict bright periodic singular soliton
and bright singular solutions, respectively, each derived from Equations (16), (23) and (24),
and Equation (17). Figure 4 presents a series of singular bell-shaped soliton solutions,
exhibiting the characteristic bell-shaped profiles with singular features, obtained from
Equations (18), (20), (22), (25), (27), and (28). Moving to Figures 5–7, dark soliton, sin-
gular bell-shaped periodic soliton, and dark periodic singular soliton solutions are dis-
played, each capturing distinct features of Equations (19), (21), and (26), respectively.
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Figures 8–12 delve into solitary wave solutions, with Figure 8 showcasing periodic kink
solitary waves from Equations (33) and (41), and Figure 9 depicting the combination of
singular kink periodic solitary wave solutions derived from Equations (34) and (42). Ad-
ditionally, Figures 10–12 present dark kink singular solitary wave, singular kink fusion
solitary waves, and kink singular solitary wave solutions, respectively, each exhibiting
unique characteristics, as dictated by their corresponding equations. Finally, Figures 13 and
14 provide visual representations of singular kink fusion solitary wave solutions obtained
from Equations (42) and (43), further enriching the understanding of the complex dynam-
ics and interactions present in the studied nonlinear system. These detailed graphical
representations serve as valuable tools for elucidating the behavior and properties of the
derived solutions, offering insights into the rich and varied dynamics of the nonlinear
fractional-order Schrödinger model under investigation.

The graphical representations provided in Figures 1–14 offer a comprehensive overview
of the diverse types of solutions derived from the equations detailed in the text. We catego-
rize these solutions into distinct classes based on their characteristics:

• Bright Soliton Solutions:

– Figure 1: Bright soliton solution derived from Equation (15), showcasing localized,
coherent wave packets characteristic of bright solitons.

• Bright Periodic Singular Soliton Solutions:

– Figure 2: Bright periodic singular soliton solution derived from
Equations (16) and (23).

– Figure 3: Bright singular solution derived from Equations (24) and (17).

• Singular Bell-Shaped Soliton Solutions:

– Figure 4: Series of singular bell-shaped soliton solutions obtained from
Equations (18), (20), (22), (25), (27), and (28).

• Dark Soliton Solutions:

– Figure 5: Dark soliton solution derived from Equation (19).

• Dark Periodic Singular Soliton Solutions:

– Figure 6: Singular bell-shaped periodic soliton solution obtained from
Equation (21).

– Figure 7: Dark periodic singular soliton solution derived from Equation (26).

• Solitary Wave Solutions:

– Figure 8: Periodic kink solitary wave solution derived from Equations (33) and (41).
– Figure 9: Combination of singular kink periodic solitary wave solutions obtained

from Equations (34) and (42).
– Figures 10–12: Dark kink singular solitary wave, singular kink fusion solitary

waves, and kink singular solitary wave solutions, each exhibiting unique charac-
teristics, as dictated by their corresponding equations.

• Singular Kink Fusion Solitary Wave Solutions:

– Figures 13 and 14: Singular kink fusion solitary wave solutions obtained from
Equations (42) and (43).

These detailed classifications and labels serve to clearly distinguish the various types
of soliton solutions presented in the graphical representations, facilitating a better under-
standing of their characteristics and implications in the studied nonlinear fractional-order
Schrödinger model.
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Figure 1. The bright soliton solution of (15), where a = 2.4, α = 0.1, m = 0.5, g = 0.4, β = 3.1,
b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.

Figure 2. The bright periodic singular soliton solution of (16), where α = 0.1, m = 0.5, β = 3.1,
b = 1.4, γ = −1.7, f = 0.2, δ = 0.5, n = 1 and h = −0.3.

Figure 3. The bright singular solution of (17), where α = 0.1, m = 0.5, β = 3.1, b = 1.4, γ = −1.7,
f = 0.2, δ = 0.5, n = 1 and h = −0.3.
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Figure 4. The singular bell-shaped soliton solution of (18), where α = 0.1, m = 0.5, β = 3.1,
b = 1.4, γ = −1.7, f = 0.2, δ = 0.5, n = 1 and h = −0.3.

Figure 5. The dark soliton solution of (19), where α = 0.1, m = 0.5, β = 3.1, b = 1.4, γ = −1.7,
f = 0.2, δ = 0.5, n = 1 and h = −0.3.

Figure 6. The singular bell-shaped periodic soliton solution of (21), where α = 0.1, m = 0.5,
β = 3.1, b = 1.4, γ = −1.7, f = 0.2, δ = 0.5, n = 1 and h = −0.3.
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Figure 7. The dark periodic singular soliton solution of (26), where α = 0.1, m = 0.5, β = 3.1,
b = 1.4, γ = −1.7, f = 0.2, δ = 0.5, n = 1 and h = −0.3.

Figure 8. The periodic kink solitary waves solutions of (33), where α = 0.1, m = 0.5, β = 3.1,
b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.

Figure 9. The combo of singular kink periodic solitary wave solutions of (34), where α = 0.1,
m = 0.5, β = 3.1, b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.
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Figure 10. The dark kink singular solitary wave solution of (35), where α = 0.1, m = 0.5, g = 0.4,
β = 3.1, b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.

Figure 11. The singular kink fusion solitary waves solution of (37), where α = 0.1, m = 0.5,
β = 3.1, b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.

Figure 12. The kink singular solitary wave solution of (39), where α = 0.1, m = 0.5, β = 3.1,
b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.
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Figure 13. The singular kink fusion solitary waves solution of (42), where α = 0.1, m = 0.5,
β = 3.1, b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.

Figure 14. The singular kink fusion solitary waves solution of (43), where α = 0.1, m = 0.5,
β = 3.1, b = 1.4, γ = −1.7, f = 0.2, δ = 0.5 and n = 1.

5. Conclusions

In conclusion, the fractional-order nonlinear Schrödinger model serves as an exam-
ple of a globally recognized nonlinear model that accommodates various physiological
nonlinearities. Utilizing two efficient techniques, the improved generalized tanh-function
method (IGTHFM), and the Sardar-subequation method (SSEM), a diverse array of cases
has been examined. Observations include bell-shaped, dark singular, periodic singular,
and combination singular bright solitons. Additionally, periodic solitary waves, singular
periodic, multi-waves, and combinations of multi-kink singular solitary wave solutions
have been identified, broadening the scope of known solutions. To enhance understanding,
graphical representations elucidating the dynamical behavior of dominant models charac-
terizing pulse interaction concerning soliton variables have been provided. These solution
sets exhibit reliability and productivity, showcasing the effectiveness of the employed meth-
ods. Furthermore, these calculated data hold the potential to expedite the evaluation and
enhancement of optical fiber wave solution efficiency. In summary, the findings contribute
to advancing the understanding of nonlinear phenomena, offering valuable insights into
the behavior of fractional-order nonlinear Schrödinger models and guiding future research
efforts in this domain.
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