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ABSTRACT 
 

Harmful contaminants generating from industry, agricultural and human activity are causing the 
degradation of soil health, along with detrimental effects on human and the environment. It is 
imperative to safeguard the soil from these dangerous pollutants by using soil remediation 
techniques that may be effective breakdown these dangerous toxins. A sustainable approach to 
remediate the soil from different contaminants is bioremediation. Bioremediation is a method where 
microbes are used to alleviate soil pollution effectively. Natural microorganisms like fungus, 
bacteria, and algae are employed in the bioremediation process to break down heavy metal (lead, 
arsenic, chromium etc.) or organic based. chemical contaminants. This study examines the use of 
microorganisms and various bioremediation methods, including genetic engineering, 
nanotechnology, and electro bioremediation, for recovering polluted soil. This investigation clarified 
the challenges associated with applying these bioremediation technologies and microorganisms, as 
well as their effects on the ecosystem and inherent soil microbial population. The goal of this 
current study is to illustrate the various technologies which are more effective in this remediation 
process. 
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1. INTRODUCTION 
 

The soil is contaminated with toxins that damage 
living organisms which generated due to the 
rapid rise of industry and human population. 
Pollutants from different industrial activities are 
important sources of pollution to the soil and 
aquatic habitats [1]. Soil and sediments are 
contaminated by a range of hazardous organic 
and inorganic contaminants that are released 
into water bodies. One of the most harmful 
chemicals released by industry into the 
ecosystem is heavy metal pollution [2]. A 
significant amount is still unknown. UP, Punjab, 
Gujarat, AP, MP, National Capital Territory and 
Rajasthan are home to the majority of these 
locations that have been recorded [3]. Industrial 
wastewaters are frequently found to contain 
heavy metal like cadmium, zinc, copper, nickel, 
lead, mercury, and chromium. These 
wastewaters come from mining operations, 
battery manufacturing, tanneries, paint and 
pigment manufacturing, and photography [4]. 
Agricultural practices release a number of 
contaminants into the soil environment, including 
lead, arsenic, copper, zinc, nickel, and aluminium 
[1]. The health of humans can be negatively 
impacted by heavy metals [5]. Even at lower 
exposure levels, metals are recognised systemic 
toxicants that can cause harm to various organs. 
These metals affect vital organs such as the 
kidney, liver, and brain and can cause 
nephrotoxicity, hepatotoxicity, and neurotoxicity 
[6]. 
 

Bioremediation is one of the most efficient, cost-
effective, and ecologically safe processes 
available [1]. Microorganisms, enzymes, genetic 
engineering, and plants may be employed in 
biological remediation however, as microbes are 
easier to work with and take longer to develop 

than plants, they are favoured. Moreover, 
microorganisms minimize the impacts of heavy 
metals, improve plant growth, and improve soil 
fertility [7]. Using this method, microbes break 
down both harmful and non-hazard elements and 
transform them into compound form. Notable 
bioremediators include bacteria, fungi, and 
archaea [8]. By storing pollutants in their tissues 
or metabolising them into less harmful forms, 
plants can also aid in the bioremediation of toxins 
through their roots. Because some plant species 
naturally collect large amounts of particular 
pollutants, they can be used to remove pollutants 
from soil [9]. Genetic engineering is method of 
bioremediation to alter the genetic composition of 
microorganisms in order to improve their capacity 
to break down contaminants [10]. This paper 
highlights the value of bioremediation and 
provides an overview of the factors influencing 
bioremediation technology. This review also 
covered the emergence of genetically modified 
microorganisms, which have powerful 
bioremediation capabilities and enormous 
promise for eliminating dangerous contaminants 
[11]. 
 

2. SOURCES OF CONTAMINANTS 
 

Pollutants are growing as a result of increased 
industrialization, contaminating the soil, water, 
and air. These pollutants are becoming more 
prevalent, endangering people, marine life, and 
the ecosystem. Contamination is caused by 
substances such as hydrocarbons, pesticides, 
herbicides, naturally occurring rock 
disintegration, and hazardous metals found in the 
environment. Both anthropogenic and                  
geogenic processes are the sources of 
contamination [12]. Fig. 1 contains different 
geogenic and anthropogenic sources of 
contaminants. 

 

 
 

Fig. 1. Different sources of contaminants 
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3. GEOGENIC SOURCES 
 
Geogenic sources denote natural sources as the 
source of contamination. The reason of the 
contamination might be attributed to several 
factors such as weathering of rocks, 
radionucleotides, or volcanic activity [13]. Rocks 
that are good for weathering include ultramafic 
(olivine), dunite, and basalt. Dunite has a higher 
concentration of nickel and chromium as a result 
of rock weathering. Soil becomes poisonous 
when these components are present in high 
concentrations [14]. The elevated fluoride 
content of granite rock due to the leaching of 
sedimentary and igneous rock particles, creating 
a cracked zone in close proximity to groundwater 
and contaminating it [15]. Like rock weathering, 
volcanoes contaminate soil and water sources. 
When volcanic eruption occurs, the lava is 
released and combines with basaltic and rhyolitic 
rocks to create toxicity in aquatic environments 
[16]. Rock weathering and volcanic eruption are 
often influenced by environmental factors or 
natural disturbances [17]. 
 

4. ANTHROPOGENIC SOURCES 
 

Anthropogenic sources, on the other hand, 
indicate contamination caused by human activity 
and could stem from residential, industrial, or 
agricultural practices [18]. 
 

A. Agricultural sources 
 

Agriculture based contamination is due to several 
contaminants coming from  organic and inorganic 
fertilizers, pesticides, insecticides, herbicides. 
 

i) Organic manures and inorganic fertilizers 
 
Nutrient sources include both organic manures 
and inorganic fertilizers; however, excessive 
usage of inorganic fertilizers combined with 
improper management and storage of manures 
might contaminate soil [19]. Overuse of fertilizers 
high in phosphorus and nitrogen degrades soil 
quality and contaminates water sources through 
runoff and excessive erosion [20]. The utilization 
of hazardous components in feeds or as growth 
promoters in organic manures, such as chicken 
manure, poses health risks [21]. 
 

ii) Pesticides 
 

Pesticide exposure poses serious health risks to 
humans, and when combined with heavy metals, 
it results in more contamination than either alone 
[22]. The pesticides in the organochlorine class, 

such as dichloro-diphenyl-trichloroethane (DDT) 
and hexachlorocyclohexane (HCH), are more 
persistent in soil and can be hazardous to the 
environment and human health [23]. 
 
iii) Insecticide 
 
When pesticides are used on plants to eradicate 
hazardous insects, they also kill beneficial 
insects that are not intended targets, leading to 
contamination [24]. For instance, some 
significant insects, like whiteflies, ingest 
honeydew that has been contaminated by 
insecticides applied on the plant. When beneficial 
insects consume this contaminated honeydew, it 
might kill them [25]. Certain man-made 
pesticides, including neonicotinoid, pollute soil 
and water sources [26]. The most popular 
insecticides are neonicotinoid pesticides, which 
account for 30% of the global market based on 
consumer use [27]. 
 
iv) Herbicides 
 
Both the soil and the groundwater are 
contaminated by herbicides. Because atrazine 
and bromacil are used excessively and are 
contaminating groundwater, it is critical to 
degrade these herbicides because groundwater 
is becoming scarcer [28]. Additionally, herbicides 
contaminate coastal areas, infecting marine life. 
The breakdown of the herbicide triazine is crucial 
since it seriously contaminates water bodies [29]. 
 

B. Industrial sources 
 

Urban soil contamination is caused by human 
activity, such as the disposal of industrial               
waste.  The causes of industry contamination 
include mining, power plants, and hazardous 
chemicals [30]. This involves the contamination 
of heavy metals including lead, arsenic, mercury, 
cadmium, etc. These metals combine with the 
soil's organic matter to increase soil toxicity [31]. 
The mining sector seriously harms the 
environment, soil, and human health. Coal, 
copper, zinc, and other mines are examples of 
mining. The concentration of heavy metals (cd, 
pb, cr, and zn) in the mines is higher than typical, 
which has a negative effect on the local 
population [32]. One major risk associated with 
brownfields (industrial production sites) is the 
pollution of industrial waste. Chemicals from 
industrial processes, including those involving 
iron, nonferrous metals, and chemical 
manufacture, are released into wastewater, 
which contaminates water, soil, and human 
health [33]. The disposal of wastewater into 
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water bodies poses a threat to aquatic and 
human life, as the presence of hazardous 
substances can disrupt the food chain [34]. 
Aquaculture is a rapidly expanding industry that 
produces 43% of sea food and 50% of fish for 
human consumption and it important to 
remediate the water bodies and soil [35]. 
 
C. Domestic Sources 
 
The majority of water bodies and the land are 
contaminated by domestic trash. Waterborne 
enteric viruses that can cause outbreaks and 
pose a major threat to life are originated by 
human wastewater [36]. Waste water from the 
home can be utilized for a variety of things, 
including irrigation in farmland. Domestic waste 
cannot be used for various reasons because of 
the presence of organic micropollutants, oil, and 
hazardous organic pollutants in this waste water 
[37]. Due to their intricate structure, these 
wastewaters in soil and aquafarm cannot be 
neutralized. They have a long-term effect on soil 
biota and affect marine life [38]. Nowadays, the 
quality of fresh water is deteriorating due to the 
disposal of sewage and domestic wastewater in 
water bodies without first eliminating the metals 
that cause contamination [39]. In coastal 
locations, antibiotic-resistant genes (ARGs) can 
be used to analyze contaminants found in 
household wastewater. The most accurate way 

to determine the level of contamination in water 
bodies is through these genes [40]. 
 

5. TYPES OF BIOREMEDIATIONS 
 
There are two types of bioremediation 
techniques: ex-situ and in situ, which are utilized 
to remove contaminants. Ex-situ bioremediation 
is taking contaminated material out of its original 
habitat and treating it somewhere else [41]. On 
the other hand, in-situ treatment includes dealing 
with pollutants at their original location and 
turning them into non-hazardous forms without 
removing them [42]. Fig. 2 describes ex-situ and 
in-situ types of bioremediation. 
 
A. In situ bioremediation 
 

i) Bioattenuation 
 
Also referred as monitored natural attenuation 
(MNA), bioattenuation is the process by which 
naturally occurring microorganisms are 
maintained in polluted places to lower their 
population to a desired level, with few or no 
involvement of human [43]. It is recommended 
for usage in comparison to other cleanup 
procedures due to its low cost. Natural 
hydrocarbon-degrading microbes can be used to 
clean up contaminated soils and lower levels of 
risk to the environment and human health [44]. 

 

 
 

Fig. 2. Types of bioremediation 
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ii) Bioventing 

 
One of the first large-scale technologies to be 
used in the 1990s, bioventing is now widely used 
in commercial applications and in common 
bioventing technique keeping the subsurface 
oxygen level around 5% [45]. It supplies oxygen 
to unsaturated zones or injects it directly into 
contaminated areas via vertical and horizontal 
wells. Organic contaminants are broken down 
and absorbed into the soil by indigenous 
microbes [46]. 

 
iii) Bioaugmentation 

 
The practice of introducing bacteria to soil to 
speed up the breakdown of contaminants is 
known as bioaugmentation. Bioaugmentation is 
frequently used for petroleum hydrocarbons, 
chlorinated pollutants [47]. Organic and inorganic 
chemicals, including phenolic compounds and 
acrylic acid, nitrite, acetone, and other hazardous 
substances, are present in a lot of industrial 
waste. bioaugmentation products are proffer, 
which makes them easy to handle and degrade 
[48]. 

 
iv) Bio-spraying 

 
By supplying gas to the saturated zone, a 
technique known as "bio spraying" improves the 
bioavailability of pollutants by promoting aerobic 
biodegradation and interaction between the air, 
water, and aquifer, advised in locations where 
there is fuel, diesel or petrol residue [49,50]. Its 
target chemicals include BTEXN (benzene, 
toluene, ethylbenzene, xylene, and 
naphthalene), which is biodegradable in an 
aerobic environment [51]. 

 
v) Bio-stimulation 
 

Microbes cannot sustain their population by 
decomposing toxins; instead, they require 
additional energy for development and growth, 
here bio stimulation plays a significant                           
role [52]. Bio-stimulation, a procedure in which 
additional nutrients are added along with                   
organic matter to the soil to encourage microbe 
growth and the biodegradation of pollutants               
[53]. 

 
A. Ex situ bioremediation 
 

There are mainly two types of ex situ methods 
i.e. solid treatment and slurry treatment which 
are discussed elaborately. 

1. Solid treatment 

 
In soli treatment, amendments are applied to the 
piles to treat the impurities. It is typically used to 
remove contaminants from household, industrial, 
and organic waste [54]. It involves the following 
techniques: 
 
i) Bio piling 
 
The disposal of soil contaminated with petroleum 
compounds or other organic chemicals is a part 
of bio piling bioremediation. The contaminated 
soil is disposed of in pile form in this technique of 
bioremediation [55]. A multitude of fertilizers and 
supplements are employed in order to augment 
the population of microorganisms. The piles are 
two to three meters high, and a vacuum pressure 
system is built beneath the soil. This system is 
coated with polythene to either boost heating or 
decrease evaporation loss. It is an economical 
method that aids in cleaning up extremely 
contaminated environments [56]. 
 
ii) Land farming 
 
In land farming, contaminated soil is disposed of 
in line beds, and aeration is kept up to date by 
turning. Soil is treated to change its chemical and 
physical characteristics in order to break down 
pollutants [57]. It may occur both in situ and ex 
situ. It's an easy procedure that uses the least 
amount of energy to treat contaminated soil. In 
aerobic circumstances, it aids in the remediation 
of soil [58]. 
 
iii) Composting 

 
Another name for it is windrows. During this 
procedure, organic materials, such as organic 
amendments, are combined with the polluted soil 
to improve the microbial characteristics by 
providing additional nutrients and carbon [59]. 
Utilizing these organic components for their 
metabolic qualities, it aids in the breakdown of 
organic waste products with the help of microbes 
[60]. 

 
2. Slurry treatments 

 
Using this method, pollutants are removed from 
the polluted soil by treating it with water. Thus, 
this approach has an adequate supply of oxygen 
and nutrients, which is beneficial for the growth 
of microorganisms. Compared to previous 
approaches, this bioremediation technique is 
quicker [61]. This technique consists of: 
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i) Bio-slurry 
 
In bioreactor techniques, water is used to 
remediate the polluted soil to create slurry. The 
amount of pollutants in the soil determines how 
much water is needed [62]. Polluted soil might be 
moved into the vessel where the degrading 
process takes place in order to break down 
contaminants. The contaminants are fed in a 
slurry or dry form. It offers an atmosphere that is 
conducive to the growth of microbes [63]. 
 

6. USE OF MICROORGANISMS IN SOIL 
REMEDIATION 

 
i) Bacteria 
 
Bacteria are beneficial heavy metal absorbent. 
Heavy metal transformation is carried out by the 
bacterial population. It is one of the better 
approaches for detoxifying heavy metals [64]. 
Organic pollutant is treated with the help plant 
growth promoting rhizobacteria (PGPR). Bacteria 
like Bacillus, pseudomonas, rhizobium, and 
Klebsiella are among the species found in 
PGPR. These species typically encourage plant 
development and aid in the removal of 
hazardous contaminants. For the purpose of 
eliminating chromium contamination, 
Pseudomonas aeroginosa is a more efficient 
species of bacteria [65]. The bacteria produces 
exopolysaccharides (ESP), which aid in the 
binding or chelation of heavy metals. These ESP 
trap the metal and detoxify the metal ion, 
preventing the bacterial cells from drying up [66]. 
Hydrocarbon pollution can also be broken down 
by the bacterial population. Hydrocarbons are the 
energy or carbon source that these bacteria use 
for growth and metabolic processes [67]. 
Aromatic and aliphatic groups are present in the 
hydrocarbon. Pseudomonas, bacteria, and 
Xanthomonas species completely destroy the 

aliphatic group of hydrocarbons, while the 
aromatic group's degradation is contingent upon 
the complexity of its structure and the existence 
of benzene rings [68]. There are two types of 
bacteria: gram positive and gram negative. 
Pseudomonas, bacillus group is one of the gram-
negative species that is best in eliminating 
pollutants [69]. 
 
ii) Fungi 
 
Fungi are heterotropic creatures that, because of 
their shape and metabolic capabilities, contribute 
to the processes of degradation in soil and 
aquatic systems. Mycoremediation is a type of 
bioremediation that incorporates fungus species 
[70]. When compared to traditional approaches, 
the use of fungus species is a more efficient and 
economical means of remediating soil [71]. 
Aspergillus species of fungus efficiently 
breakdown pesticides in soil and reduce their 
persistency; nevertheless, Microsporum, 
Penicillium, and Trichoderma species of fungus 
are the most frequently used in bioremediation 
processes [72]. White rot fungus (Phanerochaete 
chrysosporium) is beneficial in breaking down 
organic contaminants in soil and reducing their 
persistence [73]. With the aid of extracellular 
lignin-modifying enzymes, these fungi are mostly 
utilized for the breakdown of polycyclic aromatic 
hydrocarbons [74]. The Arbuscular mycorrhizal 
fungal species is capable of controlling the 
pollution caused by heavy metals. For their 
growth and metabolic processes, they utilize the 
organic components from these pollutants [75]. 
Certain indigenous fungal species, such 
Aspergillus hiratsukae and Aspergillus terreus, 
have extracellular polymeric compounds that are 
utilized to break down copper (cu) in soil 
contaminated with heavy metals [76]. Table 1 
contain the use different types of fungal species 
for the removal of contaminants. 

 
Table 1. Different fungal species used in removal of contaminants 

 

Sr no. Fungal species Host plant Contaminants 
Removed 

Reference 
 

1 Fusarium spp Wheat (Triticum 
aestivum) 

Lead (Pb), Cadmium (Cd) [77] 

2 Aspergillus spp Sunflower (Helianthus 
annuus) 

Chromium (Cr) [78] 

3 Penicillium Bell bean (Vicia faba) Cadmium (Cd), Lead (Pb) [79] 
4 Colletotrichum 

spp 
Rice (Oryza sativa) Cadmium (Cd) [80] 

5 Trichoderma NA Cadmium (Cd), Lead (Pb) [81] 
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Table 2. Contaminants bioremediation by different algal species 
 

Sl.no Algal species Contaminants removed References 

1 Chlorella vulgaris Ethidium Bromide [87] 
2 Cyanophyta (hyper accumulator) Arsenic (As) [88] 
3 Tetradesmus Phenolic compounds [89] 
4 Scenedesmus Captan [90] 
5 S. obliquus Lead (Pb) [91] 
6 Nostoc Cadmium (Cd) [92] 

 
Table 3. Different yeast species for contaminant removal 

 

Sl. no Yeast species Contaminants removed References 

1 Saccharomyces Lead (Pb) [99] 
2 Pichia Synthetic dye [100] 
3 Wickerhamomyces Copper (Cu) [101] 
4 Lipomyces Oil effluents [102] 
5 Candida Petroleum hydrocarbon [103] 

 
iii) Algae 
 
Algae are important in the bioremediation 
process because they help in changing harmful 
substances into less harmful or neutral forms. 
There are two different kinds of algae employed 
in the bioremediation process: macro algae and 
micro algae [82]. Cyanobacteria and 
Bacillariophyta are examples of microalgae, 
whereas Phaeophyta, Rhodophyta, and 
Chlorophyta are examples of macroalgae [83]. 
Microalgae are primarily employed in the 
bioremediation process, which lowers the need 
for both biological and chemical oxygen demand 
[84]. The microalgae Chlorella fusca are used to 

extract iron ( 𝐹𝑒2+ ) from water and soil. In 
addition to their high metal absorption ability, 
algae species are also reasonably priced, 
environmentally benign, and non-toxic in nature 
[85]. In order to remediate salt-affected soil, such 
as saline soil, indigenous species of microalgae 
called Coelestrella are employed because of 
their ability to withstand salinity [86]. Table 2 
contains removal of contaminants by using 
different algal species. 
 
iv) Yeast 
 
Yeast effectively aids in the bioremediation 
process by removing heavy metals from soil and 
contaminated sites, aiding in the mineralization of 
organic materials, and having the ability to 
synthesize intracellular materials like 
mannoproteins [93]. Yeast feeds the 
microorganisms involved in bioremediation with 
nutrients and occasionally with enzymes. Yeast 
species that are tolerant can be employed to get 
rid of infectious agents. For instance, the yeast 

species Rhodotorula mucilaginosa is utilized in 
the bioremediation of dumpsites [94]. It can 
produce substances like indole acetic acid (IAA) 
that stimulate plant development, or it can be 
resistant to heavy metals and aid in the 
biosorption of lead (Pb) [95]. Additionally, yeast 
contains extracellular enzymes that aid in the 
biodegradation of textile dyes, such as xylanases 
and proteinases. These enzymes are found in 
certain yeast species, such as Mrakia, 
Cystobasidium, and Vishniacozyma, which can 
biodiscolorize the textile dyes [96]. 
Saccharomyces cerevisiae, a wild species of 
yeast that can be transformed by including the 
populus gene is used for cadmium (Cd) metal 
removal [97]. Nowadays, it's common practice to 
use live or dead yeast cells to remove stubborn 
pollutants because they're so affordable and it is 
used in the bioremediation of synthetic dye [98]. 
Table 3 contains removal of contaminants by 
using different yeast species. 
 

7. PHYTOREMEDIATION 
 
Plants and bacteria in association clean up the 
environment is known as phytoremediation. 
Using naturally occurring mechanisms, this 
method breaks down and sequesters organic 
and inorganic contaminants in the rhizosphere of 
plants [104]. This technique helpful in clearing 
polluted soil of heavy metals including lead, 
cadmium, and arsenic. After the pollutants are 
absorbed by the plants, they may be harvested 
and appropriately disposed of, eliminating the 
toxins from the surrounding environment [105]. 
Fig. 3 different types of phytoremediation. Table 
4 contains different types of phytoremediation 
used in bioremediation process. 
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Table 4. Types of phytoremediation used in bioremediation 
 

Sl.
No. 

Type Contaminants 
adsorbed 

Use Plant used Reference 

1 Phytoextraction Ag, Cr, cd Contaminant 
chelation 

Alyssum murale, 
Berkheya coddii, 
Pteris vittate, 

[106] 

2 Rhizofiltration Cu, Ag, Cd, Hg, 
Pb, Mn, Cr 

Contaminant 
absorbed by 
roots 

Brassica juncea, 
Helianthus 

[107] 

3 Phytodegradation Malachite 
Green, DDT 

Contaminant 
decayed by 
plants 

Elodea 
canadensis, 
Datura innoxia 

[108] 

4 Phytovolatilizatio
n 

Organochlorine
s, Se, As 

Contaminant 
convert to volatile 
form 

Polypogonmon 
speliensis, 
Phragmites 
australis 

[109] 

5 Phytodesalinatio
n 

Na, cl Desalinization of 
soil by halophyte 
plants 

Typha latifolia, 
Lonicera japonica 
Thunb 

[108] 

6 Phytostabilization Zn, Cd, Hs, Pb Contaminant 
immobilization 

Haumaniastrum 
sp., Commelina 
sp. 

[110] 

7 Phytostimulation Polycyclic 
Aromatic 
Hydrocarbons 
(PAHs), Ar, Cd 

Contaminant 
decayed by plant 
root exudates 

Jatropha curcas, 
Populus spp. 

[111] 

 

 
 

Fig. 3. Types of phytoremediation 
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8. GENETIC ENGINEERING OF 
BIOREMEDIATION 

 

Pollutant degradation is greatly aided by 
organisms. Their capabilities are improved by 
genetic tools. Microorganisms are being actively 
modified for bioremediation through the use of 
gene editing techniques such as CRISPR-Cas9, 
ZFNs, and TALEN. With the use of these 
techniques, bacteria target contaminants more 
efficiently [112]. These genetically modified 
organisms (GMOs) have the ability to degrade a 
variety of pollutants, such as radioactive waste, 
heavy metals, polychlorinated biphenyls (PCBs), 
and petroleum hydrocarbons. The term "genetic 
bioremediation" is frequently used for GMOs 
[10]. In order to enable an organism to break 
down contaminants, fresh genetic material is 

injected into it during the genetic bioremediation 
process. Numerous techniques, like as plasmid 
conjugation, transduction, and transformation, 
can be used to accomplish this [113]. For 
example, the mutant NICot efflux gene (rcnA) is 
eliminated by the presence of the NiCoT gene of 
E. coli, which is used to remove cobalt                          
and nickel. Rhodopseudomonas palustris, 
CGA009 (RP), and Novosphingobium 
aromaticivorans were the sources of the NiCoT 
gen [114]. Bacillus cereus NWUAB01,                  
which produces biosurfactants has metal                           
removal efficacy of Pb 69%, Cd 54%, and Cr 
43% respectively [115]. Fig. 4 different                      
methods of genetic engineering used in 
bioremediation. Table 5 contains different 
techniques of gene editing used in 
bioremediation. 

 

Table 5. Different techniques of gene editing 
 

S. 
No. 

Genetic 
engineering 

Specific use Reference 
 

1 CRISPR-Cas9 CRISPR sequences identify and eliminate DNA from related 
bacteriophages. Cas9 functions as molecular scissors, cutting 
the target DNA at certain spots after it has identified it. 

[116] 

2 ZFNs ZFN produce site-specific DSB which is made up of a chain of 
zinc finger proteins. Since zinc finger proteins individually 
recognise a DNA sequence, they allow for site-specific 
targeting. 

[117] 

3 TALEs The DNA-binding domain of the TAL effector is injected into 
plant cells, they find their way to the nucleus, attach to the 
desired promoters, and start the production of genes. 

[118] 

4 Cre–loxP 
recombination 
system 

Cre–loxP target gene function which provide both spatial and 
temporal control over gene expression and preventing the total 
deletion of certain genes that may result in embryonic death. 

[119] 

5 RNAi 
technology 

Ribonucleic acid molecules target genes and can regulate 
microbe activity involved in the breakdown of pollutants. 

[120] 

6 Modular 
Cloning 
System 
(MoClo) 

MoClo assembles many DNA fragments in a predetermined 
linear sequence by using the activity of Type IIS restriction 
enzymes, such as BsaI and BpiI/BbsI. 

[121] 

 

 
 

Fig. 4. Different methods of genetic engineering used for bioremediation 
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9. MODERN TECHNIQUES FOR 
IMPROVING BIOREMEDIATION 

 

i) Nanotechnology 
 

The process of producing nanoparticles, which is 
not expensive, involves the utilization of 
microorganisms. Environmentally friendly 
materials are used in nanotechnology [122]. The 
heavy metals lead (Pb), arsenic (As), and 
cadmium (Cd), which are harmful to both 
individuals and the environment, are absorbed by 
these well-absorbent nanoparticles [123]. By 
employing biosynthetic nanoparticles, 
nanotechnology offers an affordable method of 
eliminating pollutants from the air, water, and 
soil. It is an environmentally friendly method of 
removing pollutants from contaminated materials 
[124]. To clean up the contaminated materials, 
these nanoparticles which include carbon 
nanotubes, nano enzymes, and nano iron 
particles are utilized [125]. These days, polluted 
substances are treated with a combination of 
metal nanoparticles, microbial biomolecules, and 
biogenic nanoparticles [126]. Seventy percent of 
industrial pollutants end up in water bodies, 
harming aquatic life or posing health risks to 
humans due to their entry into the food chain 
[127]. The primary source of pollution for aquatic 
bodies is the ever-increasing need for plastic. 
The size of this microplastic, which ranges from 5 
to 1000 um, is found in large amounts in the 
stomachs of marine creatures [128]. 
   
ii) Electro bioremediation 

 
A relatively new technique called electro 
bioremediation uses electroactive microbes to 
control the oxidation and reduction process in 
conjunction with electrodes. These 
microorganisms are able to transfer or accept 
electrons [129]. This technology uses 
electrokinetic processes such as 
electromigration, electroosmosis, 
electrophoresis, and electrochemical oxidation to 
remediate soil. These processes aid in the 
destruction of microorganisms since they alter 
their physical makeup [130]. By exposing the 
microbial community to direct current, it aids in 
the breakdown of polycyclic aromatic 
hydrocarbons. The voltage of current is 2V per 
centimetres [131]. This approach is multi-step, 
involving constant electric field, biostimulation, 
and bioaugmentation. Increased activity of soil-
dwelling microorganisms is referred to as 
biostimulation. The addition of microorganisms to 
the soil is known as bioaugmentation, and a 
constant electric field of 1 V per cent is applied 

[132]. This process causes the saline soil that is 
contaminated with petroleum hydrocarbons to 
become more ion-rich and capable of                   
retaining more water. As time passes, the 
amount of soil ions surrounding the electrode 
rises [133]. 
 

limitations of bioremediation: While enabling 
toxins to biodegrade through bioremediation is a 
promising, cost-effective, and ecologically 
friendly approach, there are a number of 
challenges associated with it. Bioremediation 
may take a long time for complex contaminants 
with several links [134]. The environment's pH, 
temperature, moisture content, and nutrient 
availability all affect efficiency of 
phytoremediation [135]. Certain contaminants 
are resistant to biodegradation because they are 
complex or have persistent chemical bonds. 
Developing adaptable ways to deal with a variety 
of pollutants is crucial [136]. Different 
contaminants need different microbial species, or 
bacteria that have undergone genetic 
modification, to break down. Finding the ideal 
combination might be challenging, especially in a 
new setting [114]. Products that break down 
might still be hazardous after bioremediation. 
Ensuring the safety of these byproducts is crucial 
[137]. 
 

10. CONCLUSION 
 

Removal of hazardous contaminants from soil 
through modern sophisticated techniques 
requires more time and money while emerging 
eco-friendly techniques like genetic engineering, 
nanotechnology, and electro bioremediation are 
making the process of bioremediation less time 
or capital consuming and more successful. 
Environmental pollution is getting worse day by 
day as a result of rapid urbanization and industry 
growth. In order to eliminate these harmful 
effluents from soil or water bodies, 
bioremediation is an environment friendly 
process that boosts soil fertility and microbial 
activity with enhancing economic production. 
Bioremediation is becoming more popular than 
traditional remediation techniques because of 
environmental awareness and higher efficiency. 
Modern bioremediation techniques require huge 
capital and skilled workers, scientists are trying 
to developing cheaper tools and methods that 
can eliminate contaminants from soil to improve 
soil health in a sustainable way. 
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