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1. Introduction

odes over finite commutative rings have been studied for almost 50 years. The main motivation of
C studying codes over rings is that they can be associated with codes over finite fields through the Gray
map. Recently, coding theory over finite commutative non-chain rings is a hot research topic. Recently, there
has been substantial interest in the class of additive codes. In [1,2], Delsarte contributes to the algebraic theory
of association scheme where the main idea is to characterize the subgroups of the underlying abelian group in

a given association scheme.

The covering radius is an important geometric parameter of codes. It not only indicates the maximum
error correcting capability of codes, but also relates to some practical problems such as the data compression
and transmission. Studying of the covering radius of codes has attracted many coding scientists for almost 30
years. The covering radius of linear codes over binary finite fields was studied in [3].

Additive codes over Z,7Z4 have been extensively studied in [4-7]. Enormous results were made available
on the simplex codes over finite fields and finite rings. A few of them are [8-10]. In [11], the authors, in
particular, gave lower and upper bounds on the covering radius of codes over the ring R = Z; + uZ, where
u? = 0 with respect to different distance, and they explained the covering radius of various repetition codes,
Simplex Codes (Type « and 8 over R.) The above results motivate us to work in this area.

In this paper, the simplex codes of types a« and B over R are obtained. At this juncture, the meaning of
constructing new codes is to concatenate binary and quaternary simplex codes of types a and B. These results
in the simplex codes over R, which contain the corresponding binary and R* codes as subclasses. The rest of
this paper is organized as follows

In Section 2, some properties related to additive codes over R = Z,R*, where R* = {0,1,v,1 + v}, =0
are given. The covering radius of codes over R is considered in Section 3. In Section 4, the block repetition
codes over R is defined and find their covering radius. The construction of simplex codes over R of types a
and B and the covering radius of these codes is also considered in Sections 5.

2. Preliminaries

Throughout this paper, R = Z,R*, where R* = {0,1,v,1+ v}, v? = . In this section, some preliminary
results are given based on [5] and [7]. A non empty set C is a R-additive code if it is a subgroup of Z] x R*.In
this case, C is also isomorphic to an abelian structure Z5 x R*" for some A and y. C is of type 2 R*# as a group.
It follows that it has | C |= 2**2# codewords, and the number of order two codewords in Cis | C |= 2}*H.

Consider the following extension of the Gray map
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¢:Z) x R* — 7, with n = + 25,
given by
¢ (1,w) = (1w ¢ (W), ¢ (wg)),Yu € ZLY (wy,--- ,ws) € R¥,
where
¢: R — 73,

is the Gray map given by ¢ (0) = (0, 0),¢ (1) = (0, 1),¢ (v) = (1, 1),and ¢ (1 +v) = (1, 0) . Then the binary
image of a R-additive code under the extended Gray map is called a R-linear code of length n =  + 2.

The Hamming weight of u, denoted by wty (1) and wt; (w) and wtg (w) the Lee and Euclidean weights
of w respectively, where u € Z] and w € R* are defined as

0 ify;=0
wtg (v;) =<1  ifv;=1or (1+0)
4 ifv;=0v
and
0 ifvi:O

wtr (v;)) =11 ifv;=1or (1+0v)

2 ifv;=v

The Lee weight of x is defined as wty, (x) = wty (u) + wty, (w), where x = (u, w) € ZJ x R*,and u =
(w1, -+, uy) €Z) and w = (wy, -+, wy) € R* and the Euclidean weight of x is defined as wtg (x) =
wty (1) + wtg (w) . The Gray map defined above is an isometry which transforms the Lee distance defined
over Zj X R* to the Hamming distance defined over Z5, with n = « + 24.

3. The covering radius of codes over R

The covering radius of a code C over R is introduced in this section. The covering radius of a code C is the
smallest number r such that the spheres of radius r around the codewords cover Z] x R*’. Hence, the covering
radius of a code C over R, with respect to the Lee and Euclidean distances is given by

rp (C) = max {mindL (u,c)} and rg (C) = max {mindE (u,c)} , 1)

ueZy x R0 L ceC ueZy x R0\ ceC

respectively.
The following result, for codes over Zy, given by Aoki et al. in [12] is also valid for codes over R. Its proof
follows from the definition of the covering radius and the fact that the map ¢ is a weight preserving map.

Proposition 1. Let C be a code over Z] x R* and ¢ (C) be the Gray map image of C. Then ry (C) = ry (¢ (C)).

The following result is useful for determining the covering radius of codes over rings. This is a
generalization of the result in [13] for codes over finite fields.

Proposition 2. If Cy and Cy are codes over R, of lengths ny and ny, minimum distance dy and dy, and generated by
matrices Gy and Gy, respectively, and if C is the code generated by

0|6

C= Go| A

7
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thenry (C) < ry(Co) + 14 (Cq), and the covering radius of the concatenation of Cy and Cy, denoted C,, satisfies
74 (Ce) 214 (Co) + 14 (C1)

for all distances d over R.

4. The covering radius of the block repetition codes over R

In order to determine the covering radius of simplex codes of types & and § over R, the some classes of
block codes over R is defind and the approach in [14] is used to obtain the covering radius.
7
The block repetition code C" over R is a R-additive code of length n = }_ n; with generator matrix G =

j=1
m 1y n3 ny 15 g ny

0101---010v0v---0001 4001 4+v---01 +o 1010---101111---11101v--- 1011 4+ 01l 40 ---11 40

If, forafixed1 <i <7 Foralll <j#i<7 nj =0, then the code C" = C" is denoted by C;. Therefore,
the seven basic repetition codes are given below. That,

1. C; = {(00---00),(01---01),(0v---00),(01 +v---01+0)}, is an additive code of length n = n
generated to G; = [0101 - - - 01].

2. C; ={(00---00),(0v---0v)},is an additive code of length n = n, generated to G, = [0v0v - - - 0v] .

3. C; = {(00---00),(01---01),(0v---00),(014+wv---014v)}, is an additive code of length n = n3
generated to Gz = [01 + 001 +v---01+ 7],

4. C4,={(00---00),(10---10)}, is an additive code of length n = n,4 generated to G4 = [1010- - - 10],

5. Cs = {(00---00),(01---01),(0v---00), (01 +0---01 +0),(10---10), (11---11),
(lv---1v),(114v---11+4v)}, is an additive code of length n = n5 generated to Gs = [1111 - - - 11],

6. C¢ = {(00---00),(0v---0v),(10---10), (1v---1v)}, is an additive code of length n = 14 generated to
Ge = [lvlv--- 1],

7. C; = {(00---00),(01---01),(00---00), (01 +o---01+v),(10---10),(11---11),
(lv---1v),(114v---114v)}, is an additive code of length n = mny; generated to Gy =
114011 +ov---11 +0].

The following theorems provide the covering radius of C;, for1 <j <7.

Theorem 3. The covering radius of C;,1 < j <7, with respect to the Euclidean weight is given by

%Tn <rg (Cl) =TE (C3) <2n
n<rp(Cy) <3n

T <re(C) <4n,

n S rE (C5) =TE (C7) S 271,
% <re(Ce) < F.

Gk L=

Proof. Forc € C]-, 1<j<7]1ett;(c),0 <i<7denote the number of occurrences of symbol i in the codeword
c. Considering 1 to 5, that

re (Gj) = %%f{d:s (x,C});1<j<7}

Let x € R". If x is given by (to, t1, 2, t3, ta, t5, ts, t7) , where io tj =n, then
j=

dg (X,%) =n—tyg+3t) +t5+4tg + tv,dg (X,OT) =n —t1 + 3tz + t4 + tg + 4ty,
de (x,00) = n — ty + 3tg + 4ty + t5 + t7,dp (x,01 +0) = n — t3+ 3t + ts + 4t5 + L6,
de (x,10) =n —ty +t + 4ty + t3 + 3te, dp (x,11) = n — t5 + to + tp + 4t3 + 317,
de (x,1v) = n —te + 4t + t1 + t3 + 3ty dp (x, 11 +0) = n — t7 + to + 4t + tp + 3t5.

Therefore, dE(x, Cl) = dE(JC, Cg,) = min{(n —to + 3ty + t5 + 4t + f7), (11 — 1t + 3tz + tg + tg + 41’7), (n —
b+ Bto + 4ty + t5 + t7), (1 — b5+ 3ty + ta + 45+ tg)} < 4n+2(t0+t1+t2+t3+t4+ti+t6+t7)+2(t4+t5+t6+t7) < 2n and
hence

TE (Cl) =TE (Cg) S 2n.
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s I I 1
Ifx = 00 0001 --0100---00014+v---014+v | €R" then
_ _ _ — n n n 3n
dg (x,00) = dg (x,00) = dg (x,00) = dg (x,01+0) = £ +4 (3 ) +5 =
andrE(Cl):rE(Cg,)2%".Thus,%”SrE(Cl):rE(C3)§2n.
dp(x,C) = min{(n—toy+3tr+t5+4tg+1t7),(n—ty+3tg+4t4 +t5+1t7)}
< 27’l+2(t0+f2+t5+f7)+4(t4+t6)§3n‘
2
Thus rg (C2) < 3n.
/—/EH/—}H
Ifx=1]00---0000---0v | € R" then
_ _ n
de (x,00) = dg (x,00) = 4 (Z) =n.
Thus rg (Cp) > n,and so, n < rg (Cy) < 3n.
dp(x,Cq) = min{(n—tog+3br+t5+4te+1t7),(n—ty+ 1 +4tr +t3+3t6)}
< Zn—f0+t1+7t2+;3—t4+t5+7t6+t7§4n

and hence rg (Cy) < 4n
3

Nl

——
Ifx=]00---0010---10 | € R", then

[

dE (x,@) = dE (x,ﬁ) = 1
Thus g (C4) > §,and so § < rg (Cy) < 4n.

dp(x,Cs) = dp(x,Cy) = min{(n — to + 3ty + t5 + 4t + t7), (n — t1 + 3tz + ty + te + 4t7), (n — tp + 3tg + 4t4 +
i’5+t7),(1’l—t3+3t1+t4+4t5—|—t6) (n—t4—|—t1 +4t2+i’3+3t6) (1’1—t5+t0+t2+4t3+3t7),(1’l—t6+4t0+
B +t3 4 3ty), (n— 7+t +4t1 + +3f5)} < 2n, then TE(C5) = TE(C7) < 2n.

n n n

8 8 8 8 8 8
Ifx=|00- 0001 -0100---0001 +0---01+010-- 1011 1170-- 1011 +o- 11+v € R”, then
dg (x,00) = dg (x,01) = dg (x,00) = dg (x,01 +v) = dg (x,10) = dg (x,11) = dg (x,10) =dg (x,11+0) =
6+4(fs) tfstist5T1s+4({s) +t5=n
Thus rg (Cs) =g (C7) > n,and son < rg (Cs5) = rp (C7) < 2n.
dp(x,C¢) = min{(n —tg+ 3ty +t5 + 4t +t7),(n —ty + 3tg + 4ty +t5+ t7), (n — tg + t1 +4tp + t3 +
3t), (n — te + 4t + t + t3 + 3tg) } < YEZH o6 then rp (Co) < P

1 1 1 1
Ifx=|00- OOOv -0010---101v---1v | e R",

then
dr (x,00) = dg (x,00) =di (v,10) = de (v, To) =4 (§) + 5+ §+4(§) = ¥
Thus r¢ (Ce) > 2, and so 2 < rp (Ce) < . -
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Theorem 4. The Covering radius of Cj, 1 < j < 7, with respect to the Lee weight is given by

G =
W
SN R e
NANAY
<
=
—~
@)
a1
N~—

Proof. Forc € C,1<j<7, lett; (c),0 < i <7 denote the number of occurrences of symbol 7 in the codeword
c. Considering 1 to 5, that

r(G) = max{d; (x,Cj);1<j<7}

Letx e R". If x is given by (to, t1, 1o, t3, 14, t5,t, t7) , where 'io fj = n, then
=

dL (x,00) = n —to+ty + t5 4+ 2te + t7,dp (x,01) = n —ty + t3 + ty + te + 2t7,

dp (x,00) =n—ty+1tog+ 2ty +t5+t7,dp (x,00+0) =n—t3+ 1t + tg + 2t5 + t¢,
dp (x,10) =n—ty+t +2t) +t3+ te, dp (x,11) =n —ts5+tg+ t) +2t3 + 17,
dr, (X 10) =n—teg+2g+1t + 13+ tg,dyg (X,11+Z)) =n—ty+tyg+2t1 +1tr +ts.
Therefore, d; (x,C1) =dp(x,C3) =min{(n —tg+tr+t5+2tc+t7),(n—t1 +t3+ts+ts+2t7),(n—tr +to+
Dty +ts+t7), (n— b3+t +ty + 25 + t)} < WAL < 0y then vy (Cp) = 7y (C3) < 2n.

n n n

n
4 4 4

,_/\‘,_/A ~—_— __ — _
Ifx = [00---0001---0100-- 0001+ o---01+o | € R", then dy (x,00) = dy (x,01) = dy (x,00) =

dp (x,01+0) = g+2 (%) +5=75.Thusry (C;) =7 (C3) > 5,andso 5 <r; (Cy) =1 (C3) < 2n.
dr (x,C) = min{(n—tp —I—t2+t5—|—2t6—|—t7),(n—t2+t0+2t4—|—t5+t7)} < w < 2n.
Then r (Cp) <2

If x = 0600 00 | € R, then d;, (x,00) = dj, (x,00) = 2(4) = 4. Thus r; (C;) > % and so
<

dL(x,C4) = mm{(n—to+t2+t5+2t6+t7),(n—t4+t1+2t2+t3+t6)} < w < 2n, so then
TL(C4)§21’Z.

ﬂ
2

n n
2 2

— .. 10 n 00) = 10) = (2) = n
Ifx=|00---0010---10 | € R", thend; (x,00) = dj, (x,10) = (§) = 4. Thus r (C4) > % and hence

7 <r(Cy) <2n.
dL(X,CS) = dL(JC,C7) = min{(n—t0+t2+t5+2t6+t7), (1’1— tp —|—t3—|—t4+t6+2t7), (I’l —ty 4+ tg+ 2ty +
ts+1t7),(n—tg+t1+tg+25+tg),(n—tg+H +20+i3+1t),(n—ts+tg+t+25+ 1), (n—te+ 2t +

ti+t3+tg), ( —t7+t0+2t1+t2+t5)}Swg%‘,sothenm(g):rL(Cy)g%”.
5 8 § § 5 §
/—M/—/\—/—/\ﬁ/—/\— ~ —
If x = ( 0001 - --0100- 0001 +0v---01+010---1011--- 1110 - 1011—1—0 11+0]| € R?,
then d; (x,00) dr (x,01) (x,00) = dp (x,01+0) = dp(x,10) = dp (x,11) = dp (x,10) =

pr— p— d
dL(X11+U :%+2(%)+%+1 F s+ 1+ 15 +2(f5) + {5 + 1 = ¥ Thus . (Cs) = 1. (C7) > %,
andso <rp(Cs) =1 (Cy) < 7” dp(x,Ce) = min{(n — to+ to + t5 + 2tc + t7), (n — to + to + 2t4 + t5 +
t7), (n—t4+t1 +2t) i3t tg), (n—te+2tg+H +t3+ty)} < 2 < sothenry (Co) < .

P S SRS S S . _ - _
Ifx=|00---0000---0010---101v---1v | € R", thendy (x,00) = dr (x,00) = d (x,10) = d; (x,1v) =
2(8)+ 2+ 2 +2(4) =3 Thusr; (Co) > ¥, and hence 3 < rf (Co) < 3. O

Theorem 5. The covering radius of the block repetition code C"* have the following properties;
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re (C") < L[5 (nq + ng + ng) + 3ny + 9ny] +2 (n5 +n7),
andifny =---=ny=n

rL (C") = 2n.

Proof. By Proposition 2, Theorem 3 and Theorem 4, let x = x1xx3x4x5%6x7 € R" with xq, x2, x3, x4, X5, X6, X7
is (ag,a1,a2,a3,a4,as,a6,a7), (b, b1, b, b3, by, bs, b, b7), (co,c1,c2,3,¢4,C5,¢6,¢7),(do, d1,d2,d3,ds, ds,de, d7),
(eo,el,ez, e3, ey, 65, es,€7) , (fo, f1, f2, f3, far f5, fer f7) ., (8o, g1,gz,g3,g4, gs,ga,gﬂ resPectively such that n; =
Zoﬂ], ny = Eb], nz = ZC], ng = Zd, ns = fo], ne = Zf], ny = Zg] Then dg (x,00) =
j

nq —a0+3a2+a5—|—4a6+a7+n2 —bo—|—3b2—|—b5+4bé+b7+1’l3—Co+3Cz—|—C5+4C6—|-C7+Vl4—d0+3d2+
ds +4de+dy +n5 —eg+3ey +e5s+4eg +ey+ng— fo+ 32+ f5 +4f6+f7+n7—g0+3g2+g5+4g6+g7,

n
ﬂ;/—’a "3 /_&,JL,_?L M
where 00 = 00---0000---0000 - 0000 -0000---0000---0000---00,is the first vector of C", where n = n;.
de (x,y1) = —a +3a3+a4+a6+4a7+n2—b2+3b0+4b4+b5+b7+n3—C3+3c1+C4+4C5+c6+
ng —dg +dq +4d2+d3+3d6+n5—€5+€0+€2+4E3+3€7+1’l6—f6+4f0+f1 +f3+3f4+n7—g7+go+

4g1+g2+3g5,wherey1—01 0100 0001 +0---01+010---1011- 1110 -+1v11+0v---11+4v,is the
second vector of C", where n = nj.

de (x,Yy2) = np —ay +3az + a4 + ag + 4ay + ny — by + 3bg +4by + bs + by + n3 — c3 4+ 3c1 + ¢4 +4c5 + ¢4 +
Yl4—d0+3d2+d5+4d6+d7+n5—61+3€3+€4+€6+467+Tl6—f2+3f0+4f4+f5+f7+7’l7—g3+3g1+

84 + 485 + g6, Where i, = 01--~0100~~~02}01+v---01+vOO---0001---0102}-~~0001+v---01+v,1sthe
third vector of C", where n = ns.

dg (x,y3) = ny —ay + 3ag + 4a4 + as + ay + ny — by + 3by + bs + 4bg + by + n3 — cp + 3co +4cs + 5+ c7 +
Yl4—d0+3d2+d5+4d6+d7+n5—€2+3€0+464+€5+€7+n6—f0+3f2+f5+4f6+f7+7’l7—g2+3g0+

/—/na‘/—/nL/—L "5 /—"niﬁ/—/\ﬁ
494 + g5 + g7, where yg—Ov OZJOO <0000 ---0000---000v - OZJOO -000v - - - 0v, is the fourth vector of
C", where n = ny.
dp (x,Yg) = ny — a3z + 3a1 + a4 +4as + ag + ny — by + 3bg + 4by + bs + by + n3 — c1 + 3c3 + ¢4 + ¢ + 4c7 +
n4—d0+3d2+d5+4d6+d7+n5—63+3e1+e4+4e5+e6+n6—f2+3f0+4f4+f5+f7+n7—g1—|—3g3+

ny )

—N— f—/\ﬁ /_/H\ﬁ
84+ 86 +4g7, whereyy =01+0v---01 +00v---0001- 0100 -0001+9---014+00v---0v
ny

—_—
Ol+v~~~01+z7, is the fifth vector of C", where n = ns.

dg (x Y5) = ny —ag + 3ay + as + 4ag + ay + ny — by + 3by + bs + 4bg + by + n3 — o + 3cp + ¢5 + 4cg + ¢y +
ng —dg +dq +4d2+d3+3d6+n5—€4+61 +4€2+€3+3€6+n6—f4+f1 +4f2+f3+3f6+n7—g4+g1+

ny n3 ns5
o

/—/h /—/A/—’H f—/%/ga
497 + g3 + 396, where 5 = 00 0000 0000 -0010---1010-- ~10 10---1010- - - 10, is the sixth vector of
C", where n = ng.
dg (x,%) =ny —ay + 3ag + 4a4 + as + ay + ny — bg + 3by + bs + 4bg + by + n3 — cp + 3co +4c4 + 5+ ¢y +
Ny —dg+dy+4dy+ds+3dg+n5 —eg+4eg+e1+e3+3es+ng— fa+ fr+4f2+ f3+3f6 +17— g6 +4%0 +

. /JL\FL/—E;/J;JL ”6 /—z;
g1+ &3 + 384, where g = Ov---0v00---000v---0010---101v---1v 10- 10 1v - - - 1v, is the seventh vector
of C", where n = ny.
dg (x,y7) = np — a3z + 3a1 + a4 +4as + ag + ny — by + 3bg + 4by + bs + by + n3 — c1 + 3c3 + ¢4 + ¢ + 4c7 +
ny —dg +di +4dy +dz + 3dg + ns — ey + eg + 4eq +€2+3€5+n6—f6+4f0+f1 +f3+3fa+n;—g5+ g0+

ny z 14 6 ny

—N— FM/—M/_/% f_H
2 +4g3 +3g7, whereyy; =01+7v-- -01+ 000- 0001 -0110---1011 +o---11+ov10-- 12;11 -11, is the
eighth vector of C", where n = ng.
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Thus

re (CM) < 8n1+4(ag+ay+ay+as)+12 (ay + as + ag + ay) + 8ny + 8 (by + by + bs + by) + 16 (by + bg)
E <
8

+8713+4(C0+C1+C2+C3)+12(C4+C5+C6+C7)+87’l4—4(d0+d4)+4(d1 +ds +ds+dy) +28 (dy + dg)

8
+8n5—i—8(eo—i—el4—@24—63—i—e4+e5—|—e6—i-67)4—8116—i—12(f0+f2+f4—i-f6)4—4(]“14—f3+f5—i-f7)
8

8n7 +8(g0+81+82+83+84+85+86+87)

* 8

Hence
TE (Cn) < % [5(n1+n3+n6)+3n2+9n4] +2(7’l5+7‘l7).

For the second part, that ¢ (C”") is the set given by

{000 - - - 000000 - - - 000000 - - - 000000 - - - 000000 - - - 000000 - - - 000000 - - - 000,
001---001011---011010---010100---100101 - --101111---111110- - - 110,
001---001011---011010 - - - 010000 - - - 000001 - - - 001011 - - - 011010 - - - 010,

011---011000 - - - 000011 - - - 011000 - - - 000011 - - - 011000 - - - 000011 - - - 011,
010---010011---011001 - - - 001000 - - - 000010 - - - 010011 - - - 011001 - - - 001,

000 - - - 000000 - - - 000000 - - - 000100 - - - 100100 - - - 100100 - - - 100100 - - - 100,

011---011000- - -000011 ---011100---100111---111100- - -100111 - - - 111,

010---010011 - - - 011001 - - - 001100 - - - 100110 - - - 110111 - - - 111101 - - - 101}.

Then r, (") =r (¢ (C™)) = 2n. O

5. Simplex codes of types « and j

In this section, consider the construction of simplex codes of types « and  over R. Let m7 , be the generator
matrix of S5, the binary simplex code of type «, defined as

00---0]11---1
m ‘ m ,fork > 2,
My k-1 ‘ My k1
where
my, = [0,1].

In [8], the simplex codes S}, of type a over R* were defined. The generator matrix G%. , of Sg. , is

00---0[11---1]vo--v|140vl40v---1+0

,fork > 2,

Gegot | Gkopot | Ghepor | Ghejn
where

Gge1 =[0101+0].

The generator matrix of S¢, the simplex code of type a over R is dfined, as the concatenation of 2% copies of
the generator matrix of 55, and 2k copies of the generator matrix of S%. « Siven by
Of = [ my [may |- [miy | Ghoy | Ghox| | Ghoy ], @)

fork > 1.

The standard form of ©f of the generator matrix of Sy is given by

,fork > 2,

@t | 0000---00 [ 010101 |- [11+011+0---11+7
£ O%-1 ‘ OF1 “ O
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where
ef = [0001 0001 +210111v 11 + 0]

The length of the simplex code of type a over R is equal to 23+1, and the number of codewords is equal to
2k R*¥1 for some ko and kq. In the case where k = 1 with kg = 0 and k; = 1, that all of the codewords of the
simplex code S{ are generated by @ and are given by

00 00 00 00 00 00 00 00
000100v01+210111v11 +v
00 0v 00 0w 00 Ov 00 Ov
0001+90v011011 491011

The type B simplex code S,’/f is a punctured version of S¢. The number of codewords is 250 R*¥ for some kg and

k1 and its length is 2 (2"72 + 1) (Zk - 1) .

The generator matrix of Sf is the concatenation of 2¥ copies of the generator matrix of Sg  and 2k=1 copies of
the generator matrix of Sg*,k given by
B _ p p p p B B
G)k — [ mz,k ‘ mz/k ‘ ce ‘ mzlk ‘ G *,k ‘ G *,k ‘ M ‘ GR*,k :| /fork Z 2/ (3)

B

where m; ; is the generator matrix of the binary simplex code of type f8 is given by

[11...100...0

o
My k1 ‘ My k-1

B 1110
M2 = o1 1 |7

and Gl’i* « i a generator matrix of the simplex code over R* of type B defined as

1,f0rk23,

with

ln...l ‘ 00---0 ‘ vv"'v]
,fork > 3,

a P
GRe k1 ‘ GRrek1 ‘ GRe k-1

with

cf | 1 0]
R27 10l o [ 1)1 |7

5.1. The Covering radius of the simplex codes of types « and S

The following theorems provide upper bounds on the covering radius of simplex codes over R with
respect to the Lee and Euclidean weights.

Theorem 6. The covering radius of the R-simplex codes of type a are upper bounded as follows:

rL(SE) <323 Vand g (5}) < 2¢ (Z251)).
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Proof. In R-Simplex codes of type a have a Lee weight equal to 23 or 3.23~1. Hence, from (2), Proposition 2
and Theorem 5, we have

L (S%) L (22k52 k) +rL <2k5a )

2%y, ( ) + 2k ( )

2%, (52lk> 42k, (sR ,k)

2% (2871) 42 [ (3220 13.2202) 4 4 3221 oy (S )]
21y ok (2%~ 1) +1]

23k—1 +2k.22k

2%t 4 2% < 3%,

AN VAN VAN VAN VANRE VAN VAN

Thus rp, (S¢) < 3.2%1. Similar arguments using (2), Proposition 2 and Theorem 5 give that

re (2285 ) +re (2 o)
2%y g (sg,k) +2Frg (S’}‘{*,k)

221y (84 1) +27e (Ske, 1)

22k.2k71 +2k (11 (22 ) +9)

2k _
i 1 (2% - 1) +9
6
7.2% -1
k
2( : )

Theorem 7. The covering radius of the R-Simplex codes of type 3 are given by
(iyro () <21 [(21+1) (26 -1) 2],

(ii)re (Sf) <261 (12,

TE (51?)

ININ A

IN

IN

IN

Proof. From (1), (3), Proposition 2 and Theorem 5, we have

n(sf) < o (25,) (205 ,)

o 5 42 (5

21 (85 ,) +2¢ 7 (S o)

2 (2 )_12+2’< T (2 -1) -2
21 (2F - 1) 425 [ (26— 1) -2

(214 1) (26 -1) 2]

IN IN N IA

INIA
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Similar arguments using (2), Proposition 2 and Theorem 5 give that

TE (Sf) < rt <2kS'B ) +7E (2"_15’5* k)
< 2 (Sh) 270 (k)
< rH (Sg k) + 2k 1rE( k)
. <2k —1) | et zk 2k+1 1) +% (sz B 1) _ 1‘217} (sincerE (S§> < 25)
< (2 -1) 42! [zk (21 -1) +% (2% -1) - 1‘217}
< 2¢1 {zk (21-1) + % (2% -1)+ (2 -1) - 1‘217]
<

Skt (14.22k - 449)
.
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