The Impact of Therapeutic Education in the Practice of Blood Pressure Self-measurement at the Institute of Cardiology of Abidjan

Koffi Djinguin ${ }^{\text {a,b*}}$, Gnaba loa ${ }^{\text {c,d }}$, Niamkey Thierry ${ }^{\text {a,b }}$, Kouamé Stephan ${ }^{\text {a,b }}$ Djoman Hugues ${ }^{\text {a,b }}$ and Horo Kigninlman ${ }^{\text {a,e }}$

${ }^{\text {a }}$ Felix Houphouët Boigny, University of Cocody, Côte d'Ivoire.
${ }^{5}$ Institute of Cardiology of Abidjan, Côte d'Ivoire.
${ }^{\circ}$ Alassane Ouattara of Bouaké, Côte d'Ivoire.
${ }^{d}$ University Teaching Hospital of Bouaké, Côte d'Ivoire.
${ }^{e}$ University Teaching Hospital of Cocody, Côte d'Ivoire.

Abstract

Authors' contributions This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

Open Peer Review History: This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/87130

Received 15 February 2022
Original Research Article
Accepted 20 May 2022
Published 28 June 2022

Abstract

Introduction: Self-measurement of blood pressure is a recent technique, already studied and validated, but it is still underused in the management of hypertension. Therapeutic education of the patient aims at helping patients acquire or maintain the skills they need to best manage their lives with a chronic disease. Aim: The objective of the study was to evaluate the value of therapeutic education in the practice of blood pressure self-measurement in patients followed at the Institute of Cardiology of Abidjan in order to integrate this technique into the management of hypertensive patients in Côte d'Ivoire. Materials and Methods: This study was conducted for 15 months at the Institute of Cardiology of Abidjan. The study included patients aged at least 18 years old who were diagnosed with hypertension for at least 6 months and followed up in outpatient clinics. The data were collected on an individual survey form with several items based on information from the medical records and questioning of the patients. The analyzed parameters were: socio-demographic features, other cardiovascular risk factors, clinical and paraclinical data, antihypertensive treatment, and information on self-measurement.

Qualitative variables were presented as numbers and percentages and compared by Pearson's ChiSquare Test. Quantitative variables were described as means \pm standard deviation and compared by the Reduced Error Test for large samples and by the Student's t-test for small samples ($\mathrm{n}<30$). The results were statistically significant when $p<0.05$.
Results: The study population consisted of 300 patients with a male predominance (sex ratio of 1.46). The mean age of the patients was 59.5 ± 12.7 years old. 65.3% of patients were uninsured. Other cardiovascular risk factors were dyslipidemia (35\%) and overweight (30.3%). Patients with hypertension had complications in 39.3% of cases. Heart failure was the most common complication (14.7\%).

Patients presented 38.3% and 26.3% left ventricular hypertrophy on the electrocardiogram and rhythm disorders, respectively. Echocardiographic data revealed 56.3% of left atrial dilatation. The geometry of the left ventricle was abnormal in 50.7% of cases. Among the patients, 68.3% said that they knew about the self-measurement of blood pressure. 36.3% of the subjects, who were interviewed, had already performed a blood pressure self-measurement. 40.3% were trained in blood pressure self-monitoring.
71.9% of physicians provided blood pressure self-measurement training to patients. Medical staff talked to the patient about self-monitoring in 52.1% and encouraged the patient to perform it in 37.2% of cases. Among those who had received training in blood pressure self-measurement, 31.4% said they were familiar with the 3 -step rule and in whom 39.5% gave a correct explanation. Only 25.7% of patients had self-measurement devices at the time of the survey, and the majority of blood pressure monitors or devices were upper arm ones (65.5\%).
The patients acquired blood pressure monitors by medical prescription in 41.6% of cases. Patients holding electronic blood pressure monitors or tensiometers used them regularly in 55.8% of cases.
Among them, 71.4% performed self-measurement at least once during their follow-up and 63.6\% had insurance. 74.6% of complications occurred in patients who did not perform self-measurement. Therapeutic education improved considerably the practice of self-monitoring of blood pressure.
Conclusion: The various results show that few patients had self-measurement tensiometers. The insured patients own these devices. The practice of self-measurement of blood pressure was low. However, when properly practiced, it reduced the occurrence of cardiovascular complications. The practice of therapeutic education has positive effects on patients' self-measurement of blood pressure.

Keywords: Therapeutic education; blood pressure; self-measurement; institute of cardiology; Abidjan.

1. INTRODUCTION

Hypertension is the most important cardiovascular risk factor (CVRF) worldwide. Hypertension is a major modifiable CVRF that affects 14 to 15 million people in France [1]. The prevalence of this condition is 31% and increases with the aging of the population in France [2, 3]. In a study carried out by Kramoh et al. [4] in Côte d'lvoire in 2017, the prevalence of hypertension was 20.4%. According to data from the Observatory of Medical Practice in 2009, it represented 13.1% of consultations by the general practitioner [5]. Although the clinical care of hypertension is regularly improved by new therapies, its management is closely linked to the patient as an individual who needs to learn to live with his disease. This is why the patient must be actively involved in the follow-up of his disease. Therefore, patient adherence to treatment is an important point to improve in the management of hypertension. This requires fundamentally an
improvement in knowledge [6]. Selfmeasurement of blood pressure (SMBP) is a recent technique, already studied and validated; however, it is still not widely used. It is wellknown as part of the clinical management of hypertension and of the recommendations of scientific societies $[7,8]$. All agree to promote ambulatory measurement and, particularly, SMBG because the reproducibility of blood pressure (BP) measurement is better in SMBG (and in ABPM) than in the doctor's office $[9,10]$. Therapeutic patient education (TPE) aims to help patients acquire or maintain the skills they need to best manage their lives with a chronic disease [11]. This study was conducted to evaluate the impact of therapeutic education in the practice of blood pressure selfmeasurement in patients followed at the Institute of Cardiology of Abidjan for integration of blood pressure self-measurement into the care of hypertensive patients in Côte d'Ivoire.

2. MATERIALS AND METHODS

The descriptive prospective study was conducted between February 1, 2019, and May 1, 2020, at the Institute of Cardiology of Abidjan Heart, located at the Treichville University Hospital in Ivory Coast. The study included the hypertensive patients aged at least 18 years old having hypertension for at least 6 months and was received outpatient consultations for their followup. Patients had to be in sinus rhythm on electrocardiogram.

Thus, considering the prevalence of hypertension at 20.4% [4], taking a confidence level of 95% and a margin of error of 5%, the minimum sample size calculated by SPSS software should be 250 patients increased to 300 patients for this study. Patients who had only one consultation and for whom the diagnosis of hypertension was suspected but could not be confirmed by a second consultation and/or additional investigations and patients with permanent atrial fibrillation on the electrocardiogram were not included.

Data were collected on a simple survey form consisting of several items based on the information from the patients' medical records and their questioning. The studied parameters were sociodemographic parameters, other cardiovascular risk factors, clinical and paraclinical features, antihypertensive treatment, and information on self-measurement.

Data analysis and processing were performed using SPSS software version 22. Categorical variables, presented as numbers and percentages, were compared by Pearson's ChiSquare Test. Quantitative variables, presented as means \pm standard deviation, were compared by the Reduced Error Test for large samples and the Student's t-test for small samples ($n<30$). The results were considered significant when $\mathrm{p}<0.05$.

For ethical considerations, the patients gave their informed consent. The results were analyzed in accordance with the laws on the protection of patients' data and with the ethical principles regarding the Declaration of Helsinki.

3. RESULTS

3.1 Sociodemographic Data

The inclusion and non-inclusion criteria allowed us to select a population of 300 patients. In this study population, men represented 59.3% with a sex ratio of 1.46 . The mean age of the patients was 59.5 ± 12.7 years old (extremes: 20-89 years). The median age was 60 years old. Patients over 50 years (77.3%) were the majority of the study population (Fig. 1). The unemployed and employed were 33% and 31%, respectively in the private sector (Fig. 2). 65.3\% of patients were uninsured (Fig. 3).

Fig. 1. Distribution of patients by age groups ($\mathrm{n}=300$)
Remplace Virgule (,) Qui Est Dans Les Pourcentages Par Un Point (.) Ex : 07,3\% devient 07.3\%

Fig. 2. Distribution of patients by occupation ($\mathrm{n}=300$)
Remplace Virgule (,) Qui Est Dans Les Pourcentages Par Un Point (.) Ex : 17,3\% devient 17.3\%.
Remplace Sans emploi par unemployed; etudiants par students; fonctionnaires par civil servants; travailleurs du prive par private workers; retraites par retired

Fig. 3. Distribution of patients by health coverage ($\mathrm{n}=300$)
Remplace Virgule (,) Qui Est Dans Les Pourcentages Par Un Point (.) Ex : 65,3\% devient 65.3\%.
Remplace assures par insured et non assures par uninsured

3.2 Clinical Data

Besides the high blood pressure, the other cardiovascular risk factors were dyslipidemia (35\%), overweight (30.3\%), obesity (24.7\%), and diabetes (15\%). Patients with arterial
hypertension presented complications in 39.3\% of cases (Fig. 4). Heart failure (14.7\%) was the most common complication, followed by obliterative arterial disease of the lower limbs (8.3\%) (Table 1).

Fig. 4. Proportion of cardiovascular risk factors
Remplace Virgule (,) Qui Est Dans Les Pourcentages Par Un Point (.) Ex : 09,7\% devient 09.7\%. REMPLACE diabete par diabetes ; tabagisme par smoking ; dyslipidemies par dyslipidemia ; Obesite par obesity ; surpoids par overweight ; sedentarite par sedentary ; hyperuricemia ; heridite coronaire par coronary hereditary

Table 1. Distribution of patients by complication

	Number of cases	Percentages (\%)
Heart failure	44	14.7
Accident vasculaire cérébral	24	8.0
Kidney failure	19	6.3
Coronary diésasse	24	8.0
$\checkmark \quad$ Angor	8	2.7
$\checkmark \quad$ Myocardial infarction	16	5.3
OALL	25	8.3
Hypertensive retinopathy	14	4.7

OALL: Obliterative arteriopathy of the lower limbs

3.3 Paraclinical Data

Left ventricular hypertrophies were 38.3% of the complications on the electrocardiogram and rhythm disorders were 26.3% (Table 2). Echocardiographic data presented 56.3% of left atrial dilatation. Left ventricular geometry was abnormal in 50.7% of cases (Table 3).

3.4 Self-measurement Data

Among patients, 68.3% said they were familiar with self-measurement of blood pressure (Fig. 5) and 36.3% had already performed selfmeasurement (Fig. 6). 40.3\% of hypertensive patients had received training in blood pressure
self-measurement (Fig. 7). Blood pressure selfmeasurement training was provided by physicians in 71.9%. The patient was self-trained in 14.9% of cases (Fig. 8). More than half of the medical staff (52.1%) talked to the patients about blood pressure self-measurement and encouraged them to perform it in 37.2% of cases (Table 2). Among those who received the training in blood pressure self-measurement, 31.4% said that they knew the 3 -step rule and in whom 39.5% gave a correct explanation (Table 4). Only 25.7% of this study population had selfmeasurement devices, which were mostly upper arm monitors (65.5%) at the time of the survey (Table 5). The patients acquired these devices by medical prescription in 41.6% of cases (Fig.
9). People holding electronic blood pressure monitors used them regularly in 55.8% of cases (Fig. 10). Among them, 71.4\% performed
self-measurement at least once during their follow-up (Fig. 11) and 63.6\% had insurance (Table 6).

Table 2. Distribution of patients by ECG findings

ECG findings		Number of cases
LVH	115	Percentages (\%)
LAH	65	38.3
Repolarization abnormality	79	21.7
Rhythm disorder	79	23.00
\checkmark	Paroxysmal AF	3
\checkmark	Atrial flutter	6
\checkmark	VT	8
\checkmark	VES	20
\checkmark	AES	38
Conduction disorder	56	2.0
\checkmark	AVB1 and AVB2 Mobittz	12
\checkmark	High degree AVB	11
\checkmark	Complete RBB	13

LVH: Left Ventricular Hypertrophy VT: Ventricular Tachycardia LAH: Left Atrial Hypertrophy; AF: Atrial Fibrillation; AES: Auricular Extrasystol; VES: Ventricular Extrasystole AVB Auriculo-Ventricular Block; HLAB: Hemi Left Anterior Block LBB: Left Branch Block RBB: Right Branch Block

Fig. 5. Distribution of patients by knowledge of blood pressure self-measurement ($\mathrm{n}=300$)

1. Knows SMBP 31.7\% 2. Ignores SMBP 68.3 \%

Table 3. Distribution by doppler echocardiography findings

	Number of cases	Percentages
Dilatation LA	169	56.3
LV Dilatation	28	9.3
LV Dysfunction (LVEF<40\%)	35	11.7
LV Geometry		
\checkmark	Normal	134
\checkmark	Concentric remodeling	42
\checkmark	LVH	
\bullet	Eccentric hypertrophy	39

LA: Left Atrium LVEF: Left Ventricular Ejection Fraction LV: Left Ventricle LVH: Left Ventricular Hypertrophy

Fig. 6. Distribution of patients according to the performance of blood pressure selfmeasurement by hypertensive patients ($\mathrm{n}=300$)
AMT REALISEE =SMBP achieved; SMBP not achieved 35.3% et 53.7%

Fig. 7. Distribution of patients by training received ($\mathrm{n}=300$)

1. Training received (Formation Recue); 2. Training not received (Formation Non Recue). 2. 40.3% ET 59.7%

Fig. 8. Distribution of patients by training provider ($\mathrm{n}=121$)

1. Physician; 2. Pharmacist; 3. Paramedics; 4.The patient himself.
2. $71,9 \%$ devien 71.9%......

Table 4. Distribution of patients by medical staff role in patient practice ($\mathrm{n}=121$)

Fig. 9. Distribution of patients according to how the electronic blood pressure monitor was obtained ($\mathrm{n}=77$)
Medical prescription 58.4\% The patient himself 41.6\%

Table 5. Distribution of patients according to knowledge of the 3-step rule $(\mathrm{n}=121)$

	Number of cases	Percentage
Ignorance of the three-measure rule	83	68.6
Ignorance of the three-measure rule	38	31.4
$\checkmark \quad$ Incorrect explanation	23	60.5
$\checkmark \quad$ Correct explanation	15	39.5

Table 6. Distribution of patients by ownership of electronic blood pressure monitor and its type ($\mathrm{n}=300$)

	Number of cases	Percentages (\%)	
No		223	74.3
Yes	77	25.7	
\checkmark	Upper arm tensiometer	50	65
\checkmark	Wrist tensiometer	27	35

Fig. 10. Distribution of patients by the use of electronic blood pressure monitor ($\mathrm{n}=77$)
23,4\% devient 23.4\% et
Pas d'utilisation=no use ; utilisation rare=rare use ; utilisation reguliere= regular use

Fig. 11. Distribution of patients according to the performance of self-measurement of blood pressure in patients with an electronic blood pressure monitor ($\mathrm{n}=77$)

REMPLACE 28,6\% PAR 28.6\% ET 71,4\% PAR 71.8\%.
Achievement of SMBP et No achievement of SMBP

Table 7. Distribution of patients according to the occurrence of complications and performance of SMBP

		Complications		
		Yes	No	p-value
SMBP	Yes	$30(25.4 \%)$	$79(43.4 \%)$	
	No	$88(74.6 \%)$	$103(56.6 \%)$	0.002

Table 8. Distribution of patients with electronic blood pressure monitors and health coverage

		Electronic Tensiometer		p
		Yes	No	value
Insurance	Yes	$49(63.6 \%)$	$55(24.7 \%)$	
	No	$28(36.4 \%)$	$168(75.3 \%)$	$<0,001$

Table 9. Distribution of patients according to the results of therapeutic education on blood pressure self-measurement

SMBP	Without therapeutic education	After therapeutic education	p value
Achieved	$109(36.3 \%)$	$273(91 \%)$	<0.001
Not achieved	$191(63.7 \%)$	$27(9 \%)$	<0.001

3.5 Impact of Therapeutic Education on AMT

Complications occurred in 74.6% of those who did not perform any blood pressure selfmeasurement (Table 7). The therapeutic education significantly improved the practice of blood pressure self-measurement in a statistically significant way (Table 8).

4. DISCUSSION

The general objective of this study was to evaluate the interest in therapeutic education in the practice of blood pressure self-measurement and the compliance of antihypertensive treatment at the Institute of Cardiology of Abidjan. The study showed that 68.3% of patients said they knew about SMBG before the therapeutic education; However, only 36.3% had already performed it. In the majority of cases, training on TMA was given by physicians (71.9%). The patient was self-taught in 14.9% of cases. The medical staff talked to the patients about SMBG in 52.1% of cases and encouraged them to perform it in 37.2% of cases. 25.7% of the patients had self-measurement devices at the time of the survey and the majority of them were upper arm monitors (65\%). Blood pressure monitors were prescribed to patients in 41.6% of cases. Complications occurred most often in patients who had not benefited from SMBG
(74.6\%). After the therapeutic education, 91% of the patients performed SMBG compared with only 36.3% before the training.

Although in-office BP measurement remains the cornerstone of the diagnosis of hypertension, out-of-office BP measurements, when used appropriately, are also effective in accelerating diagnosis and blood pressure control [12]. During the interviews conducted during the survey, 68% of the patients reported having knowledge about SMBP of which 36.3% were aware of performing SMBP. Only 25.7% of this study population had an electronic blood pressure monitor, 71% of whom performed SMBP. These proportions were lower than those observed in France [13] and in Guadeloupe [14], where more than 40% and 43% of hypertensive patients respectively had self-measurement devices.

Most of the time, training on self-measurement was provided by the physician (71.9\%). Paramedical personnel was involved in only 5\% of cases. The involvement of paramedical staff could help increase the practice of selfmeasurement, especially in rural and semi-rural areas where the proportion of physicians is low. The pharmacist can play an important role at this stage by providing only validated devices, advising the patient on the correct use of the device, and proposing a periodic check of the device [15]. Annual Belgian statistics show that
the majority of self-measurement monitors sold in pharmacies are validated tools [16].

Most of the patients who had an electronic blood pressure monitor had health insurance (68.64\%). The SMBG was mainly used by patients with jobs. This could be explained by the fact that professional patients were able to afford electronic blood pressure monitors due to the cost of the devices. In 2009 in France, 36\% of treated hypertensive patients owned a blood pressure monitor compared with 12% of those who did not receive antihypertensive treatment in 2009 in France [17]. These findings are comparable to that of Great Britain, where 10\% of the general population uses a self-tensiometer [18].

However, the possession of a blood pressure monitor is not synonymous with its correct use. Thus, the devices used are not in most cases the best ones, and the measurement procedures are very poorly understood by uneducated patients: 40% think that a single measurement is sufficient, and 45% believe that the measurement is done in the supine position [19].

In contrast, the practice of health care providers still does not seem to be better because, the methodology used remains too far from those recommended in the guidelines despite the increasing use of self-measurement by physicians: only 11% of physicians, who use selfmeasurement, advise their patients to perform at least 3 days of measurements with a blood pressure monitor equipped with a humeral cuff, and calculate the average according to Boivin [20]. On the contrary, it has been demonstrated for more than a decade that self-measurement is easily achievable, even in elderly patients in general practice [21].

5. CONCLUSION

The different results found in this work showed that few patients had self-measurement devices. Those who had them were mainly covered by health insurance. Self-measurement of blood pressure was not widely practiced, although several patients reported having some knowledge of it; however, when it was practiced correctly, it reduced the occurrence of cardiovascular complications. The limits to its extension result from the cost of the devices in a country where health insurance coverage is low and self-tensiometers are not reimbursed by health insurance.

The practice of therapeutic education has had a positive effect on both the realization of selfmeasurement of blood pressure by patients and the promotion of therapeutic observance. Given the benefits of therapeutic education, practitioners should take more interest in it and integrate it into a large program of hypertension management. The promotion of SMBP practice should be appropriate in a health environment dominated today by coronavirus disease.

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

CONSENT

As per international standard or university standard, patients' written consent has been collected and preserved by the author(s).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Ben Guirat N, Peroz J, Safar M, Blacher J. Epidemiology of hypertension. Elsevier Masson. 2013:13.
2. Pillon F, Buxereaud J. The essentials on Arterial Hypertension, Pharm Actual. 2014; 53(532):20-4.
3. Girerd X, Hanon O, Pannier B, Mourad J, Vaïsse B. Arterial hypertension in the elderly in France: treatment characteristics and frequency of cognitive complaints according to the FLAHS 2014 survey. Ann Cardiol Angéiol. 2015 ;145-9.
4. Kramoh KE, Ekoua D, Abina A, koffi KF, Koffi DB, Boka B et al. May measurement month 2017: an analysis of blood pressure screening results in cote d'ivoire-subsaharan Africa. Eur heart J Supplement. 2019; 21 (suppl D):47-9.
5. Observatory of general medicine. Epidemiological information on pathologies and their management in the city. Data in consultation for: HTA. Available at: http://omg.sfmg.org/content/donnees/donn ees.php. Accessed 3/12/2019.
6. Hill MN, Miller NH, De Geest A. ASH position paper: Adherence and Persistence with Taking Medication to control High

Blood Pressure. J Clin Hypertens. 2010; 12(10):757-64.
7. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G et al. 2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2007; 28(12):1462-536.
8. European Society of Hypertension/European Society of Cardiology. Guidelines for the management of arterial hypertension. J Hypertens. 2003;21(6):1011-53.
9. Recommendations of the French Society of Arterial Hypertension. Blood pressure measurements for the diagnosis and follow-up of the hypertensive patient; 2011. [Internet].

Available: www.sfhta.eu/wpcontent/uploads/2012/08/mesuresPAReco SFHTA2011-fev.ppt consulted on 03/12/2019.
10. Bouhanik B, Chamontin B. Confirming the diagnosis: Role of ambulatory measures. Med Competition. 2014;136:277.
11. WHO. Therapeutic patient education. Continuing education program for care professionals in the field of chronic disease prevention. Copenhagen 1998. [Internet]. Available :http://www.euro.who.int/__data/ assets/pdf_file/0009/145296/E93849.pdf. Accessed on 01/12/2020
12. Sega R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G et al. Prognostic value of ambulatory and home blood pressure compared with office blood pressure in the general population: Followup results from the pressure Arteriosis Monitorate e Loro Associazioni (PAMELA) study. Traffic. 2005;111:1777-83.
13. Girerd X. FLASHS 2017 study: Treatment of hypertension.
Available:www.comitehta.org. consulted on 08/12/2019.
14. Atallah A, Mourad JJ, Inamo J, Zouini N, Mbou P, Merion E et al. Use of blood pressure self-measurement devices in Guadeloupe in 2005-PRETRAHGUARD survey. Arch Evil Heart Vaiss. 2006; 99:1225-9.
15. Persu A, Facard RH, De Cort P, Legat P, Van Bortel L. On the proper use of blood pressure self-measurement, consensus document, under the aegis of the Belgian committee for the fight against hypertension (CBH), of the Scientific Society of General Medicine (SSMG), Domus Medica, the Belgian Pharmaceutical Association (APB) and the Belgian Cardiology League. Louvin Med. 2008;127(8):305-9.
16. Saevels J. Automatic blood pressure monitors in Belgian pharmacies. JPharm. 2006;61(3):79-82.
17. Mourad JJ, Herpin D, Postel-Vinay N Pannier B, Vaisse B, Gired X. Use of blood pressure self-measurement devices in France in 2004. Arch Mal Cœur Vaiss. 2005;98:779-82.
18. McManus R, Glasziou P, Hayen A, Mant J. Blood pressure self monitoring: Questions and answers from a national conference. BMJ. 2008;337:2732.
19. Postel-Vinay N, Mordefroid O, Lemee C. knowledge of Internet users on selfmeasurement of blood pressure evaluated by tutorial. SFHTA congress communication. Arch Coeur Vais. 2009: 1.
20. Boivin J, Gaillet TJ, Fay R. In 2009, French general practitioners practiced selfmeasurement more often than in 2004, without strictly respecting the recommended methodology. SFHTA congress communication. Arch Coeur Vais. $2009 ; 1$.
21. Vaisse B, Genes N, Vaur L, Clerson P, Mallion JM. Feasibility of home blood pressure self-measurement in elderly hypertensive subjects. Arch Mal Coeur Vaiss. 2000;93:963-7.
© 2022 Djinguin et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

