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ABSTRACT 
 
Aims: A review of methods and approaches for solving linear integer problems is presented in this 
work. These problems are classified as NP-hard optimization algorithms in artificial intelligence.  
Study Design: we have used the Google scholar to collect the data resources from past 5 years to 
analysis the techniques and methods used in different algorithms in artificial intelligence.  
Methodology: Exact optimum solution for this class of challenges also need use of substantial 
computer resources. The current direction in which several researcher focuses their efforts to 
effectively address numerous difficult practical issues is the creation of efficient hybrid techniques 
that combine in an appropriate way the finest elements of multiple methods (precise or estimated). 
The approximation algorithms' core heuristic techniques might be classified as constructive 
algorithms and local-improvement algorithms. 
Results: We examined three artificial intelligence algorithms utilizing the linear integer 
programming approach. Algorithm based on population It has also been demonstrated that a 
population of a critical size is necessary for a population-based optimization method to be effective. 
The genetic algorithm is shown next. The goal value associated with this solution may be utilized to 
effectively reduce the search tree in bound and branch type integer programming methods. Finally, 
we analyze the particle swarm optimization (PSO) approach, which demonstrates that In most 
cases, PSO outperforms the Branch and Bound method in solving such issues quickly.   
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Conclusion: In actuality, integer optimization issues describe a wide spectrum of real-world 
difficulties. Their population and size are constantly growing. Although while accurate methods for 
integer issues have substantially improved in recent years, their long runtimes and memory needs 
make them unsuitable for actual medium and large-scale applications. 
 

 
Keywords: Linear integer programming; artificial intelligence; population based algorithm; genetic 

algorithm, PSO. 
 

1. INTRODUCTION  
 
Integer programming (IP) related to artificial 
intelligence (AI) is projected to play an important 
part in the construction of AI-enabled 
technologies and services in the future. In 
particular, integer programming may improve the 
effectiveness and reliability of decision-making 
algorithms, as well as minimize the computation 
cost of AI-enabled operations. Furthermore, 
integer programming may be utilized to create 
AI-driven planning and routing solutions as well 
as to improve the precision of machine learning 
approaches. As AI becomes more powerful and 
prevalent, integer programming will play an 
increasingly important role in making                         
AI-enabled systems more productive and 
accurate [1]. 

 
1.1 Benefit of IP  
 
Despite its benefits, integer programming 
connected to artificial intelligence has significant 
disadvantages. One significant challenge is that 
IP is computationally expensive, necessitating 
vast volumes of data and processing. 
Furthermore, IP can be challenging to implement 
since it necessitates a substantial amount of 
expertise and knowledge to apply the approach 
to a specific situation. Moreover, because IP is 
based on addressing complicated optimization 
issues, developing methods that are 
simultaneously effective and efficient can be 
challenging. Finally, integer programming might 
provide difficult-to-interpret results, making it 
challenging to make judgments based on them 
[2]. 
 

1.2 Disadvantage of IP 
 

Despite these disadvantages, IP in conjunction 
with artificial intelligence may be a valuable tool 
in the creation of AI-enabled apps and services. 
Organizations may acquire a better grasp of how 
AI-enabled technologies can provide them with 
increased decision-making capabilities, 
efficiency, and accuracy by showcasing the 

benefits of employing IP in AI-enabled 
applications [2]. 
 

1.3 Purpose of IP  
 
A type of multipurpose constrained optimization 
model with integer variables, linear integer 
programming has an objective function that is a 
linear function and constraints that are linear 
inequalities. The optimization process using 
Linear Integer Programming (LIP) is illustrated in 
the following generalized example:  
 

(1) Increase to max cx 
(2) focus to: Ax ≤ b, 
(3) x ∈ Z

n
 , 

 
Where x  Z

n
 is a vector of n integer variables: x 

= (x1, x2... xn).  This formulation also includes 
equality constraints due to the fact that each 
equality constraint can be described by two 
inequality constraints. The data are rational and 
given by the mn matrix A, the 1n matrix c, and the 
m1 matrix b. in eq (2) [3]. 
 
Linear integer optimization problems can be used 
to describe an inclusive range of real-world 
issues in economics, politics, social science, 
logistics, and other fields. LIP problems can be 
used to solve combinatorial problems like, 
warehouse location, knapsack-capital budgeting , 
traveling salesperson, decreasing costs, machine 
and equipment selection, set covering areas, 
optimum flow challenges, corresponding 
challenges, weighted corresponding challenges, 
spanning trees challenges, and many planning 
problems. By simply approximating the required 
nonlinear functions using piece - wise functions, 
several nonlinear optimization problem with 
linear constraints might be converted into LIP 
optimization techniques [4].  
 

1.4 Research Objective  
 
In this article we will analysis three Artificial 
intelligence algorithms by applying integer 
programming in the meta- heuristics approach, 
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population based algorithm, particle swarm 
optimization and genetic algorithm. Details of 
each algorithm will be discussed in chapter 3.  

 
2. LITERATURE REVIEW 
 
Swarm Intelligence and evolutionary algorithms 
are stochastic optimization approaches that use 
computational principles comparable to natural 
evolution and social behavior, respectively. They 
are capable of dealing with issues involving 
discontinuous objective functions and disjoint 
search spaces [5]. The most prevalent 
paradigms of such technologies are Genetic 
Algorithms (GA), Evolution Strategies (ES), and 
the Particle Swarm Optimizer (PSO). GA and ES 
are based on natural evolution concepts that are 
viewed as laws in the optimization process. PSO, 
on the different hand, is based on social behavior 
modeling. Early methods toward Evolutionary 
Algorithms for IP are described in [6,7] 

 
IPs may be highly difficult to solve in principle 
(NP-hard) and in reality due to their generality. 
There is no polynomial-time algorithm that 
provides assured solution for all IPs. As a result, 
developing effective algorithms for addressing 
certain types of IPs is critical. Machine learning 
(ML) emerges as an obvious method for fine-
tuning those heuristics. Likewise, the use of ML 
to discrete optimization has been a hot issue in 
recent years, with a variety of methodologies in 
the research [8]. One technique involves 
acquiring the mappings from an IP instances to 
an approximation optimum solution directly.  

 
As a function prediction, these approaches 
implicitly train a solution process for a problem 
instance. These techniques are appealing due to 
their black-box nature and broad application. 
Approaches that embed ML agents as 
subroutines in problem-specific, human-designed 
algorithms are at the opposite extreme of the 
spectrum [9]. ML is utilized to improve some of 
the algorithm's heuristic components. For many 
significant and challenging classes of issues, 
these methods can benefits from algorithm 
design know-how, but their application is limited 
by certain (e.g. greedy) algorithmic strategies. 

 
To summarize, many academics have 
investigated the problem of integer linear 
programming and have made significant 
advances, however research on the subject of 
integer linear programming using an artificial 
intelligence approach is still uncommon. 

2.1 Research Question 
 
From the literature we have extracted following 
research questions: 
  
R1: Is population-based algorithm acts efficiently 

using integer programming?  
R2: Is Genetic algorithm acts efficiently using 

integer programming? 
R3: Is Particle Swarm Optimization (PSO) 

algorithm acts efficiently using integer 
programming? 
 

3. MATERIALS AND METHODS  
 

Because IP optimization issues and LIP 
optimization approaches (1)-(3) belong to the 
category of NP-hard optimization algorithms, 
finding an optimal and even a workable result for 
large extent conditions is highly difficult and 
needs substantial computing effort. Finding an 
acceptable answer is usually more important 
than waiting a lengthy time for the ideal 
alternative. Some flexible limitations may remain 
in the issue model definition, and they can be 
adjusted only little. The precise algorithms must 
solve the issue even if one restriction is changed 
slightly. For real-world applications, this might be 
time-consuming and costly [10]. The 
approximation methods are less sensitive to 
minor variations in some restrictions. Some of 
them tackle the problem sequentially, while 
others break it down into parts. In such cases, 
fixing the full problem is not required. As 
subroutines in precise algorithms, approximation 
algorithms have a wide range of applications. 
They might be used to find a suitable starting 
point, to reduce the available range of 
alternatives, or to guide the search for a perfect 
answer. A wide range of approximation 
approaches have been devised to solve 
enormous real-world LIP optimization problems, 
with no guarantee that the final solution is 
optimum [11]. 
 

During the last thirty years, several local search-
based Meta-heuristic algorithms have been 
created to circumvent the problem of local 
optimization and to reach a global optimum 
solution. They have been shown to be quite 
beneficial in practice. Many handbooks have 
been written in the last fifteen years devoted to 
the fundamental meta-heuristic techniques, their 
attributes and characteristics, as well as their 
usual applications. They are aimed at scientists, 
operations researchers, engineers, and 
application professionals who are seeking for the 
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best optimization solution to handle specific 
challenges [12,13]. 
 
The approximation algorithms may be split into 
three groups based on the accuracy of the 
results obtained [14]: 
 

- Approximation algorithms with arbitrarily 
pre-determined accuracy (absolute or 
relative); 

- Algorithms for approximation with a 
predetermined level of accuracy in which 
the forecast error is not typically zero. 

- In this situation Heuristic algorithms, it is 
assumed, based on tests and other 
assessments, that they will discover a 
good quality solution to the issue using 
appropriate computer resources, but no 
quantitative evaluation of their correctness 
is provided. 

 
Because it has been demonstrated analytically 
that they complete their work with a polynomial 
number of commonly used mathematical 
operations, it is necessary to develop 
approximate algorithms.  
 
The following are the fundamental heuristic 
strategies used in approximation algorithms: 
 

- constructive algorithms  
- Local improvement algorithms. 

 

3.1 Constructive Algorithms   
 
The constructive algorithms generate the solution 
step by step using the issue data. The majority of 
the time, until the algorithm's efficiency is 
exhausted, there is no solution. This family 
includes the algorithm that is referred to as 
"greedy." In order to achieve the best local 
improvement, this algorithm adds a new step to 
the gained comprehensive. The traveling 
salesmen scenario is a well-known example of a 
greedy algorithm in action. Although these 
approaches are among the fastest approximation 
algorithms, they usually provide low-quality 
results. As a consequence, constructive 
algorithms usually include "look-ahead" 
procedures that analyze the future 
consequences and ramifications of the current 
decision [15,16]. 
 

3.2 Local-improvement Algorithms 
 
The idea behind local-improvement algorithms is 
simple. They start with an initial solution to the 

problem, often obtained through a constructive 
algorithm. The solutions evaluated are those in 
the vicinity of the current solution x, within N(x). If 
a better solution is found, it becomes the new 
current solution and its surrounding solutions are 
explored. This process continues until no more 
improvements can be made and the current 
solution becomes a local optimum. The method 
for determining the importance of a solution's 
neighborhood is clear. The set of solution that 
can be derived from x by using a simple 
transformation like t is referred to as the 
neighborhood N(x, t) of solutions x; 
consequently, diverse neighbors result from 
diverse transformations. There have been a 
number of proposals for finding a new best 
solution x [17]: 
 

- a selection of x at random from N (x, t); 
- (first-fit) the first solution that finds an 

improvement is used; 
- All possible solutions around N(x, t) are 

looked into, and either the solution with 
the greatest improvement (best-fit) or 
some other intermediate condition is 
used.  

 
The magnitude of this neighborhood is important 
because it shows how far away the recent 
solution is from creating a neighborhood where 
potential ideas can be looked at. The fact that 
these methods can only provide a local optimum 
is their primary flaw. Increasing the size of the 
neighborhood N(x,t) or attempting to describe 
various transition t that determine the 
neighborhood N(x, t), initial the search from 
random initial solutions selected at random in the 
possible area, attempting to perfect the search 
methods, and permitting the selection of a weak 
solution in the neighborhood N in some cases 
are some of the many approaches that can be 
taken to avoid this issue (x, t) [18]. 
  

3.3 Data Collection  
 
We have used different search engines to extract 
the data regarding artificial intelligence algorithm 
that are using integer programming.  
 
We have tried using different keywords “Artificial 
Intelligence” and “integer programming”, 
“Artificial intelligence algorithm and integer 
programming”, “PSO algorithm using integer 
programming”, genetic algorithm using integer 
programming” and population based algorithm 
using integer programming”.  All of the searches 
are done past 5 years (2018- 2022). 
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Table 1. Data collection from search engines 
 

Search engine Search quantity 

Google Scholar  18700 
IEEE 756 
Elseviser 2951 
ACM 3171 

 
We narrow down our research using only those 
papers that completely related to our topic. 
Having related keywords in the titles.  After 
reading and narrowing down the papers we have 
selected three AI algorithms using integer 
programming. 
 
The population-based algorithms, which are a 
comprehensive set of meta-heuristics based on 
common notions of the best survival and can 
learn,, are the most well-known and powerful 
meta-heuristics. Particle Swarm Optimization and 
Genetic Algorithms are two examples. The key 
heuristic techniques and algorithms are 
discussed below 
 

4. RESULTS AND DISCUSSION 
 

4.1 Population Based Algorithm  
 
In contrast to the meta-heuristics that came 
before it, these [7] deal with a population, or 
group, of solutions. Moments of cooperation and 
self-adaptation mix at every iteration, which 
presents the typical search phase in the search 
space. Collaboration periods include the 
choosing, exchange, updating of information, or 
creation of test points through direct or indirect 
sharing of data collected during the search 
among individuals. Self-adaptation periods 
involve the application of a change, improvement 
in performance, or local search method. The 
theoretical foundations of population-based 
algorithms are depicted below: 
 
Create a first population of individuals; 
While no stopping situation is met do 
Co-operation, 
Self-adaptation, 
EndWhile 
 

4.1.1 Algorithm analysis for population based 
algorithm  

 

Optimization serves as a model for this approach 
to locating the feasible domain. The outcome of 
these methods is determined by how the group is 
modified. Population-based approaches for 
discrete optimization encompass evolutionary 

algorithms, ant colony optimization, and particle 
swarm optimization. To imitate natural evolution, 
a set of operations is applied to the current 
population in each generation to create 
individuals for the next one [14,16]. In the 
population, the fitness value of each answer is 
determined. Some evaluations, whether 
experimental or otherwise, are used to convert it 
into an objective function or another objective 
function. Individuals with the greatest fitness 
levels are directly or indirectly engaged in the 
next population, generating new persons through 
a change or a combination of them. The 
operations applied are: alteration or mutation 
which directly changes individuals, and 
combination or crossover that creates new 
individuals through combining two or more 
individuals. The remaining solutions are 
discarded, indicating a decision has been made. 
Evolutionary algorithms use non-deterministic 
algorithms. They vary in how they generate, 
evaluate, select, and modify solutions. Besides 
genetic algorithms, the term "evolved algorithms" 
encompasses a broad range of other population-
based algorithms as almost all functions can be 
freely generated and modified to address specific 
problems [19]. 
 
Algorithm for population based algorithm using 
linear programming 
 
Input: Problem parameters N; (wj , rj ), for j = 1, 
2,...,N; 
 Wi for i = 1, 2...; objective target η; 
population size n; parent size µ 
Output: Number of rows (H); chosen solution 

matrix xij for 
 i=1,2,….H and j= 1,2,….N; gained 
objective f

T 

 

4.1.2 Outcome of the study 
 
The proposed population-based method 
demonstrates the effectiveness of the linear 
programming approach by using a combination 
of techniques, such as tournament selection to 
pick the best parent solutions, recombination to 
merge desirable traits from two parents, and 
mutations to improve offspring solutions. With 
each iteration, solutions improve exponentially 
fast and the desired target can be reached within 
16 to 18 iterations for a problem with a million 
variables. 
 
Such a big optimization issue has rarely been 
attempted to be addressed in practice, especially 
with such few solution evaluation and such a 
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short computing time. The major grounds for its 
effectiveness are the exploitation of the 
problem's linearity in constructing a recombine 
operators throughout a collection of solutions and 
their subsequent repair procedures. 
 
This outcome is answering our first research 
question that the ability of a population-based 
optimization algorithm's recombine operator to 
combine great and partial data from two or more 
members of the population into a single new 
solution is its strength. The recombination 
operator is primarily to blame for the convincing 
demonstration of the population-based linear 
programming method's effectiveness. 
 

4.2 Genetic Algorithm  
 
In the mid-1960s, few pioneering works on 
Genetic algorithms (GA) were presented; they 
apply many methods for boosting search 
efficiency [18,19]. Their method mimics species 
genetic evolution. Individuals are a population of 
alternative GA solutions. A selection operator is 
used to randomly select a number of parent-child 
pairs from the current population. Each pair 
reproduces through a crossover operator, 
resulting in the birth of two new individuals 
(solution) known as offspring. During natural 
evolution, a mutation operator is utilized to 
randomly change the progeny individuals 
replicating the mutation with a low likelihood. 
Individuals from the population with lower 
objective function values are eventually replaced 
by their children with higher objective function 
values. This technique is repeatedly performed 
until the population no longer improves or after a 
set number of repetitions (generations). Despite 
the fact that GA has been shown to be useful for 
a wide range of issues, there is no assurance 
that it will result in the most effective solution. 
Their convergence can be affected by the 
genetic operators used, the likelihood of 
mutation, and the selection criteria used, all of 
which necessitate fine-tuning of the parameters. 
Despite the fact that there is a fundamental 
explanation for GA's effectiveness, most 
circumstances do not easily fall into this model. It 
is probable to combine GA with other heuristic 
strategies and organize them as parallel 
algorithms [20]. 
 
4.2.1 Application to Branch and Bound 

algorithm 
  
In this part, we suggest using GA to discover a 
good first feasible integer solution to a LIP. 

min c Tx,    (A)  
subject to Ax = b,   (B) 
l ≤ x ≤ u,    (C)  
xj integer, j = 1, . . . , p ≤ n,  (D) 
 

Where A ∈ R
m×n

 and all vectors are of 

appropriate dimension. 
 

In our example, a gene is a feasible integer value 
of an integer variable that meets (C), and a 
genome is a viable vector that meets (C). If p n, 
there is a vector with more than 0 non-integer 
elements. The objective is to create and use a 
GA to find a (hopefully) great integer-solvable 
problem. Because only the values of the 
objective function will be used, it is not necessary 
for the solutions to be comparable [21]. 
 

Algorithm for GA for LP 
 

1. Work through the relaxed LP challenge. 
Set k=1, S=. Form a first population P1, 

then choose a genome from the population 
Pk.  

2. Fix the genes and determine the genome's 
value. 

3. If the answer meets (2) and (3), proceed to 
4, otherwise proceed to 5. 

4. If the answer is satisfactory, save it in S. 
5. If there are any remaining genomes in the 

population, proceed to step 2, otherwise 
proceed to step 6. 

6. If k = K, go to B&B; otherwise, go to 7. 
7. Add the population Pk to the set of stored 

possible solutions S; Pk: = Pk S. 
8.  k:= k + 1. Crossover, mutation, and 

selection activities are used to determine 
the next generation Pk, goto 2. 

 

4.2.2 Outcome of the study  
 

This outcome answer our second research 
question that when the Branch and Bound (B&B) 
procedure begins, the matched objective value is 
utilized as the dominant solution if the GA gives 
an integer viable solution. Wide branches of the 
trees can be excluded from the search if they are 
adequate, contributing to the B&B's overall 
efficiency. 

 
4.3 Particle Swarm Optimization (PSO) 

Algorithm  
 
The goal of PSO is to replicate the collective 
behavior of schools of fish, bee swarms, bird 
flocks, and other living things. Each particle in 
PSO moves to a new location by utilizing three 
vectors - collaboration, competition, and friction. 
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Fig. 1. Block diagram for finding a good feasible integer solution by GA 
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The velocity of the particle, v(t), is considered to 
calculate the inertia vector, which is weighted by 
a constant factor w. This results in a 
representation of the particle's inclination to keep 
its current velocity [22,23]. The particle y's 
(tpresent) position is linked to its best individual 
place in the competition vector during the search 
phase. A randomly distributed function is used to 
weight this vector. The collaboration vector 
connects the particle's present position y(t) to the 
particle's global best position. A second 
randomly distributed function is used to weight 
this vector. It is obvious that particle collaboration 
is critical for determining the global best solution. 
For the particles to avoid entrapment in the local 
minima, inertia and competition are required [22]. 
 
4.3.1 Branch and bound technique 
 
The BB method can be algorithmically drawn as 
follows [23] 
 

1. Begin with a relaxed feasible region M0  

S and partition M0 into finitely many 
subsets Mi ; i = 1; 2;:::;m, where S is the 
feasible area of the problem. 

2. For each subset Mi , determine lower (and 
if possible) upper bounds, (Mi) and  

(Mi), respectively, satisfying 

  (Mi)  inf f (Mi  S)  (Mi)    where f is 

the objective function under concern.  
Then, the bound defined as  
    :=                 Mi) 

And  
   :=                Mi) 

Are the complete bound i.e. 
  min f(s)  

3. If = ( -    for pre-defined constant  

> 0), then stop. 
4. If not, select some of the subsets Mi and 

partition them to create a more defined M0 
partition. Repetition of the procedure is 
required to establish new, hopefully, 
improved bounds for the new partition 
elements. 

 
4.3.2 Outcome of the study 
 
The benefit of the BB method is that it usually 
lets you reject subclasses of S where the least of 
f cannot be reached during the iteration process. 
The BB method encounters significant obstacles, 
such as correctly separating the viable zone and 
selecting the sub problem to investigate. Integer 
Programming issues have been solved 
successfully using the BB method. The 

fundamental integer problem is transformed into 
a continuous one by the approach presented in 
this paper. Then, it uses Sequential Quadratic 
Programming to solve the sub-problems that 
result from limiting the parameters' scope, which 
is still considered continuous. This method is 
repeated until all of the variables have integer 
values. When a possible integer solution is 
obtained at a node with an upper bound larger 
than or comparable to the upper limit at any other 
ending node, an efficient integer solution is 
obtained, this answered our last research 
question.  
 

5. CONCLUSION 
 

In reality, a wide range of real-world problems 
are described by integer optimization problems. 
Their size and population are always increasing. 
Even though exact algorithms for integer 
problems have improved significantly in recent 
years, their excessive runtimes and memory 
requirements typically render them useless for 
actual medium and large-scale problems.  
 

Because achieving a decent viable answer in a 
reasonable period is totally adequate for many 
real issues, developing heuristic algorithms with 
polynomial computing cost remains a current 
topic. Because of their exponential computing 
complexity, many large-scale real-world issues 
cannot be handled by precise algorithms. In this 
circumstance, the only option is to employ 
approximation polynomial time methods. 
 

Several advances in AI algorithms and methods 
have helped integer programming. Some of the 
possible future directions for developing these 
advances may be understood via a framework 
that connects the viewpoints of AI and 
computational modeling. 
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