
*Corresponding author: E-mail: pavloir@gmail.com;

Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023

Asian Journal of Research in Computer Science

Volume 15, Issue 2, Page 1-10, 2023; Article no.AJRCOS.97011
ISSN: 2581-8260

Future Trails for Integer Programming
and Relations to Artificial Intelligence

Pavlo Romaniuk

a*

a
Senior Programmer/Developer, Capgemini America Inc, Ukraine.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJRCOS/2023/v15i2315

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/97011

Received: 18/12/2022
Accepted: 24/02/2023
Published: 02/03/2023

ABSTRACT

Aims: A review of methods and approaches for solving linear integer problems is presented in this
work. These problems are classified as NP-hard optimization algorithms in artificial intelligence.
Study Design: we have used the Google scholar to collect the data resources from past 5 years to
analysis the techniques and methods used in different algorithms in artificial intelligence.
Methodology: Exact optimum solution for this class of challenges also need use of substantial
computer resources. The current direction in which several researcher focuses their efforts to
effectively address numerous difficult practical issues is the creation of efficient hybrid techniques
that combine in an appropriate way the finest elements of multiple methods (precise or estimated).
The approximation algorithms' core heuristic techniques might be classified as constructive
algorithms and local-improvement algorithms.
Results: We examined three artificial intelligence algorithms utilizing the linear integer
programming approach. Algorithm based on population It has also been demonstrated that a
population of a critical size is necessary for a population-based optimization method to be effective.
The genetic algorithm is shown next. The goal value associated with this solution may be utilized to
effectively reduce the search tree in bound and branch type integer programming methods. Finally,
we analyze the particle swarm optimization (PSO) approach, which demonstrates that In most
cases, PSO outperforms the Branch and Bound method in solving such issues quickly.

Review Article

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

2

Conclusion: In actuality, integer optimization issues describe a wide spectrum of real-world
difficulties. Their population and size are constantly growing. Although while accurate methods for
integer issues have substantially improved in recent years, their long runtimes and memory needs
make them unsuitable for actual medium and large-scale applications.

Keywords: Linear integer programming; artificial intelligence; population based algorithm; genetic

algorithm, PSO.

1. INTRODUCTION

Integer programming (IP) related to artificial
intelligence (AI) is projected to play an important
part in the construction of AI-enabled
technologies and services in the future. In
particular, integer programming may improve the
effectiveness and reliability of decision-making
algorithms, as well as minimize the computation
cost of AI-enabled operations. Furthermore,
integer programming may be utilized to create
AI-driven planning and routing solutions as well
as to improve the precision of machine learning
approaches. As AI becomes more powerful and
prevalent, integer programming will play an
increasingly important role in making
AI-enabled systems more productive and
accurate [1].

1.1 Benefit of IP

Despite its benefits, integer programming
connected to artificial intelligence has significant
disadvantages. One significant challenge is that
IP is computationally expensive, necessitating
vast volumes of data and processing.
Furthermore, IP can be challenging to implement
since it necessitates a substantial amount of
expertise and knowledge to apply the approach
to a specific situation. Moreover, because IP is
based on addressing complicated optimization
issues, developing methods that are
simultaneously effective and efficient can be
challenging. Finally, integer programming might
provide difficult-to-interpret results, making it
challenging to make judgments based on them
[2].

1.2 Disadvantage of IP

Despite these disadvantages, IP in conjunction
with artificial intelligence may be a valuable tool
in the creation of AI-enabled apps and services.
Organizations may acquire a better grasp of how
AI-enabled technologies can provide them with
increased decision-making capabilities,
efficiency, and accuracy by showcasing the

benefits of employing IP in AI-enabled
applications [2].

1.3 Purpose of IP

A type of multipurpose constrained optimization
model with integer variables, linear integer
programming has an objective function that is a
linear function and constraints that are linear
inequalities. The optimization process using
Linear Integer Programming (LIP) is illustrated in
the following generalized example:

(1) Increase to max cx
(2) focus to: Ax ≤ b,
(3) x ∈ Z

n
 ,

Where x  Z

n
 is a vector of n integer variables: x

= (x1, x2... xn). This formulation also includes
equality constraints due to the fact that each
equality constraint can be described by two
inequality constraints. The data are rational and
given by the mn matrix A, the 1n matrix c, and the
m1 matrix b. in eq (2) [3].

Linear integer optimization problems can be used
to describe an inclusive range of real-world
issues in economics, politics, social science,
logistics, and other fields. LIP problems can be
used to solve combinatorial problems like,
warehouse location, knapsack-capital budgeting ,
traveling salesperson, decreasing costs, machine
and equipment selection, set covering areas,
optimum flow challenges, corresponding
challenges, weighted corresponding challenges,
spanning trees challenges, and many planning
problems. By simply approximating the required
nonlinear functions using piece - wise functions,
several nonlinear optimization problem with
linear constraints might be converted into LIP
optimization techniques [4].

1.4 Research Objective

In this article we will analysis three Artificial
intelligence algorithms by applying integer
programming in the meta- heuristics approach,

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

3

population based algorithm, particle swarm
optimization and genetic algorithm. Details of
each algorithm will be discussed in chapter 3.

2. LITERATURE REVIEW

Swarm Intelligence and evolutionary algorithms
are stochastic optimization approaches that use
computational principles comparable to natural
evolution and social behavior, respectively. They
are capable of dealing with issues involving
discontinuous objective functions and disjoint
search spaces [5]. The most prevalent
paradigms of such technologies are Genetic
Algorithms (GA), Evolution Strategies (ES), and
the Particle Swarm Optimizer (PSO). GA and ES
are based on natural evolution concepts that are
viewed as laws in the optimization process. PSO,
on the different hand, is based on social behavior
modeling. Early methods toward Evolutionary
Algorithms for IP are described in [6,7]

IPs may be highly difficult to solve in principle
(NP-hard) and in reality due to their generality.
There is no polynomial-time algorithm that
provides assured solution for all IPs. As a result,
developing effective algorithms for addressing
certain types of IPs is critical. Machine learning
(ML) emerges as an obvious method for fine-
tuning those heuristics. Likewise, the use of ML
to discrete optimization has been a hot issue in
recent years, with a variety of methodologies in
the research [8]. One technique involves
acquiring the mappings from an IP instances to
an approximation optimum solution directly.

As a function prediction, these approaches
implicitly train a solution process for a problem
instance. These techniques are appealing due to
their black-box nature and broad application.
Approaches that embed ML agents as
subroutines in problem-specific, human-designed
algorithms are at the opposite extreme of the
spectrum [9]. ML is utilized to improve some of
the algorithm's heuristic components. For many
significant and challenging classes of issues,
these methods can benefits from algorithm
design know-how, but their application is limited
by certain (e.g. greedy) algorithmic strategies.

To summarize, many academics have
investigated the problem of integer linear
programming and have made significant
advances, however research on the subject of
integer linear programming using an artificial
intelligence approach is still uncommon.

2.1 Research Question

From the literature we have extracted following
research questions:

R1: Is population-based algorithm acts efficiently

using integer programming?
R2: Is Genetic algorithm acts efficiently using

integer programming?
R3: Is Particle Swarm Optimization (PSO)

algorithm acts efficiently using integer
programming?

3. MATERIALS AND METHODS

Because IP optimization issues and LIP
optimization approaches (1)-(3) belong to the
category of NP-hard optimization algorithms,
finding an optimal and even a workable result for
large extent conditions is highly difficult and
needs substantial computing effort. Finding an
acceptable answer is usually more important
than waiting a lengthy time for the ideal
alternative. Some flexible limitations may remain
in the issue model definition, and they can be
adjusted only little. The precise algorithms must
solve the issue even if one restriction is changed
slightly. For real-world applications, this might be
time-consuming and costly [10]. The
approximation methods are less sensitive to
minor variations in some restrictions. Some of
them tackle the problem sequentially, while
others break it down into parts. In such cases,
fixing the full problem is not required. As
subroutines in precise algorithms, approximation
algorithms have a wide range of applications.
They might be used to find a suitable starting
point, to reduce the available range of
alternatives, or to guide the search for a perfect
answer. A wide range of approximation
approaches have been devised to solve
enormous real-world LIP optimization problems,
with no guarantee that the final solution is
optimum [11].

During the last thirty years, several local search-
based Meta-heuristic algorithms have been
created to circumvent the problem of local
optimization and to reach a global optimum
solution. They have been shown to be quite
beneficial in practice. Many handbooks have
been written in the last fifteen years devoted to
the fundamental meta-heuristic techniques, their
attributes and characteristics, as well as their
usual applications. They are aimed at scientists,
operations researchers, engineers, and
application professionals who are seeking for the

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

4

best optimization solution to handle specific
challenges [12,13].

The approximation algorithms may be split into
three groups based on the accuracy of the
results obtained [14]:

- Approximation algorithms with arbitrarily
pre-determined accuracy (absolute or
relative);

- Algorithms for approximation with a
predetermined level of accuracy in which
the forecast error is not typically zero.

- In this situation Heuristic algorithms, it is
assumed, based on tests and other
assessments, that they will discover a
good quality solution to the issue using
appropriate computer resources, but no
quantitative evaluation of their correctness
is provided.

Because it has been demonstrated analytically
that they complete their work with a polynomial
number of commonly used mathematical
operations, it is necessary to develop
approximate algorithms.

The following are the fundamental heuristic
strategies used in approximation algorithms:

- constructive algorithms
- Local improvement algorithms.

3.1 Constructive Algorithms

The constructive algorithms generate the solution
step by step using the issue data. The majority of
the time, until the algorithm's efficiency is
exhausted, there is no solution. This family
includes the algorithm that is referred to as
"greedy." In order to achieve the best local
improvement, this algorithm adds a new step to
the gained comprehensive. The traveling
salesmen scenario is a well-known example of a
greedy algorithm in action. Although these
approaches are among the fastest approximation
algorithms, they usually provide low-quality
results. As a consequence, constructive
algorithms usually include "look-ahead"
procedures that analyze the future
consequences and ramifications of the current
decision [15,16].

3.2 Local-improvement Algorithms

The idea behind local-improvement algorithms is
simple. They start with an initial solution to the

problem, often obtained through a constructive
algorithm. The solutions evaluated are those in
the vicinity of the current solution x, within N(x). If
a better solution is found, it becomes the new
current solution and its surrounding solutions are
explored. This process continues until no more
improvements can be made and the current
solution becomes a local optimum. The method
for determining the importance of a solution's
neighborhood is clear. The set of solution that
can be derived from x by using a simple
transformation like t is referred to as the
neighborhood N(x, t) of solutions x;
consequently, diverse neighbors result from
diverse transformations. There have been a
number of proposals for finding a new best
solution x [17]:

- a selection of x at random from N (x, t);
- (first-fit) the first solution that finds an

improvement is used;
- All possible solutions around N(x, t) are

looked into, and either the solution with
the greatest improvement (best-fit) or
some other intermediate condition is
used.

The magnitude of this neighborhood is important
because it shows how far away the recent
solution is from creating a neighborhood where
potential ideas can be looked at. The fact that
these methods can only provide a local optimum
is their primary flaw. Increasing the size of the
neighborhood N(x,t) or attempting to describe
various transition t that determine the
neighborhood N(x, t), initial the search from
random initial solutions selected at random in the
possible area, attempting to perfect the search
methods, and permitting the selection of a weak
solution in the neighborhood N in some cases
are some of the many approaches that can be
taken to avoid this issue (x, t) [18].

3.3 Data Collection

We have used different search engines to extract
the data regarding artificial intelligence algorithm
that are using integer programming.

We have tried using different keywords “Artificial
Intelligence” and “integer programming”,
“Artificial intelligence algorithm and integer
programming”, “PSO algorithm using integer
programming”, genetic algorithm using integer
programming” and population based algorithm
using integer programming”. All of the searches
are done past 5 years (2018- 2022).

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

5

Table 1. Data collection from search engines

Search engine Search quantity

Google Scholar 18700
IEEE 756
Elseviser 2951
ACM 3171

We narrow down our research using only those
papers that completely related to our topic.
Having related keywords in the titles. After
reading and narrowing down the papers we have
selected three AI algorithms using integer
programming.

The population-based algorithms, which are a
comprehensive set of meta-heuristics based on
common notions of the best survival and can
learn,, are the most well-known and powerful
meta-heuristics. Particle Swarm Optimization and
Genetic Algorithms are two examples. The key
heuristic techniques and algorithms are
discussed below

4. RESULTS AND DISCUSSION

4.1 Population Based Algorithm

In contrast to the meta-heuristics that came
before it, these [7] deal with a population, or
group, of solutions. Moments of cooperation and
self-adaptation mix at every iteration, which
presents the typical search phase in the search
space. Collaboration periods include the
choosing, exchange, updating of information, or
creation of test points through direct or indirect
sharing of data collected during the search
among individuals. Self-adaptation periods
involve the application of a change, improvement
in performance, or local search method. The
theoretical foundations of population-based
algorithms are depicted below:

Create a first population of individuals;
While no stopping situation is met do
Co-operation,
Self-adaptation,
EndWhile

4.1.1 Algorithm analysis for population based
algorithm

Optimization serves as a model for this approach
to locating the feasible domain. The outcome of
these methods is determined by how the group is
modified. Population-based approaches for
discrete optimization encompass evolutionary

algorithms, ant colony optimization, and particle
swarm optimization. To imitate natural evolution,
a set of operations is applied to the current
population in each generation to create
individuals for the next one [14,16]. In the
population, the fitness value of each answer is
determined. Some evaluations, whether
experimental or otherwise, are used to convert it
into an objective function or another objective
function. Individuals with the greatest fitness
levels are directly or indirectly engaged in the
next population, generating new persons through
a change or a combination of them. The
operations applied are: alteration or mutation
which directly changes individuals, and
combination or crossover that creates new
individuals through combining two or more
individuals. The remaining solutions are
discarded, indicating a decision has been made.
Evolutionary algorithms use non-deterministic
algorithms. They vary in how they generate,
evaluate, select, and modify solutions. Besides
genetic algorithms, the term "evolved algorithms"
encompasses a broad range of other population-
based algorithms as almost all functions can be
freely generated and modified to address specific
problems [19].

Algorithm for population based algorithm using
linear programming

Input: Problem parameters N; (wj , rj), for j = 1,
2,...,N;
 Wi for i = 1, 2...; objective target η;
population size n; parent size µ
Output: Number of rows (H); chosen solution

matrix xij for
 i=1,2,….H and j= 1,2,….N; gained
objective f

T

4.1.2 Outcome of the study

The proposed population-based method
demonstrates the effectiveness of the linear
programming approach by using a combination
of techniques, such as tournament selection to
pick the best parent solutions, recombination to
merge desirable traits from two parents, and
mutations to improve offspring solutions. With
each iteration, solutions improve exponentially
fast and the desired target can be reached within
16 to 18 iterations for a problem with a million
variables.

Such a big optimization issue has rarely been
attempted to be addressed in practice, especially
with such few solution evaluation and such a

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

6

short computing time. The major grounds for its
effectiveness are the exploitation of the
problem's linearity in constructing a recombine
operators throughout a collection of solutions and
their subsequent repair procedures.

This outcome is answering our first research
question that the ability of a population-based
optimization algorithm's recombine operator to
combine great and partial data from two or more
members of the population into a single new
solution is its strength. The recombination
operator is primarily to blame for the convincing
demonstration of the population-based linear
programming method's effectiveness.

4.2 Genetic Algorithm

In the mid-1960s, few pioneering works on
Genetic algorithms (GA) were presented; they
apply many methods for boosting search
efficiency [18,19]. Their method mimics species
genetic evolution. Individuals are a population of
alternative GA solutions. A selection operator is
used to randomly select a number of parent-child
pairs from the current population. Each pair
reproduces through a crossover operator,
resulting in the birth of two new individuals
(solution) known as offspring. During natural
evolution, a mutation operator is utilized to
randomly change the progeny individuals
replicating the mutation with a low likelihood.
Individuals from the population with lower
objective function values are eventually replaced
by their children with higher objective function
values. This technique is repeatedly performed
until the population no longer improves or after a
set number of repetitions (generations). Despite
the fact that GA has been shown to be useful for
a wide range of issues, there is no assurance
that it will result in the most effective solution.
Their convergence can be affected by the
genetic operators used, the likelihood of
mutation, and the selection criteria used, all of
which necessitate fine-tuning of the parameters.
Despite the fact that there is a fundamental
explanation for GA's effectiveness, most
circumstances do not easily fall into this model. It
is probable to combine GA with other heuristic
strategies and organize them as parallel
algorithms [20].

4.2.1 Application to Branch and Bound

algorithm

In this part, we suggest using GA to discover a
good first feasible integer solution to a LIP.

min c Tx, (A)
subject to Ax = b, (B)
l ≤ x ≤ u, (C)
xj integer, j = 1, . . . , p ≤ n, (D)

Where A ∈ R
m×n

 and all vectors are of

appropriate dimension.

In our example, a gene is a feasible integer value
of an integer variable that meets (C), and a
genome is a viable vector that meets (C). If p n,
there is a vector with more than 0 non-integer
elements. The objective is to create and use a
GA to find a (hopefully) great integer-solvable
problem. Because only the values of the
objective function will be used, it is not necessary
for the solutions to be comparable [21].

Algorithm for GA for LP

1. Work through the relaxed LP challenge.
Set k=1, S=. Form a first population P1,

then choose a genome from the population
Pk.

2. Fix the genes and determine the genome's
value.

3. If the answer meets (2) and (3), proceed to
4, otherwise proceed to 5.

4. If the answer is satisfactory, save it in S.
5. If there are any remaining genomes in the

population, proceed to step 2, otherwise
proceed to step 6.

6. If k = K, go to B&B; otherwise, go to 7.
7. Add the population Pk to the set of stored

possible solutions S; Pk: = Pk S.
8. k:= k + 1. Crossover, mutation, and

selection activities are used to determine
the next generation Pk, goto 2.

4.2.2 Outcome of the study

This outcome answer our second research
question that when the Branch and Bound (B&B)
procedure begins, the matched objective value is
utilized as the dominant solution if the GA gives
an integer viable solution. Wide branches of the
trees can be excluded from the search if they are
adequate, contributing to the B&B's overall
efficiency.

4.3 Particle Swarm Optimization (PSO)

Algorithm

The goal of PSO is to replicate the collective
behavior of schools of fish, bee swarms, bird
flocks, and other living things. Each particle in
PSO moves to a new location by utilizing three
vectors - collaboration, competition, and friction.

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

7

Fig. 1. Block diagram for finding a good feasible integer solution by GA

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

8

The velocity of the particle, v(t), is considered to
calculate the inertia vector, which is weighted by
a constant factor w. This results in a
representation of the particle's inclination to keep
its current velocity [22,23]. The particle y's
(tpresent) position is linked to its best individual
place in the competition vector during the search
phase. A randomly distributed function is used to
weight this vector. The collaboration vector
connects the particle's present position y(t) to the
particle's global best position. A second
randomly distributed function is used to weight
this vector. It is obvious that particle collaboration
is critical for determining the global best solution.
For the particles to avoid entrapment in the local
minima, inertia and competition are required [22].

4.3.1 Branch and bound technique

The BB method can be algorithmically drawn as
follows [23]

1. Begin with a relaxed feasible region M0 

S and partition M0 into finitely many
subsets Mi ; i = 1; 2;:::;m, where S is the
feasible area of the problem.

2. For each subset Mi , determine lower (and
if possible) upper bounds, (Mi) and

(Mi), respectively, satisfying

 (Mi)  inf f (Mi  S)  (Mi) where f is

the objective function under concern.
Then, the bound defined as
  := Mi)

And
  :=  Mi)

Are the complete bound i.e.
 min f(s) 

3. If = ( -    for pre-defined constant 

> 0), then stop.
4. If not, select some of the subsets Mi and

partition them to create a more defined M0
partition. Repetition of the procedure is
required to establish new, hopefully,
improved bounds for the new partition
elements.

4.3.2 Outcome of the study

The benefit of the BB method is that it usually
lets you reject subclasses of S where the least of
f cannot be reached during the iteration process.
The BB method encounters significant obstacles,
such as correctly separating the viable zone and
selecting the sub problem to investigate. Integer
Programming issues have been solved
successfully using the BB method. The

fundamental integer problem is transformed into
a continuous one by the approach presented in
this paper. Then, it uses Sequential Quadratic
Programming to solve the sub-problems that
result from limiting the parameters' scope, which
is still considered continuous. This method is
repeated until all of the variables have integer
values. When a possible integer solution is
obtained at a node with an upper bound larger
than or comparable to the upper limit at any other
ending node, an efficient integer solution is
obtained, this answered our last research
question.

5. CONCLUSION

In reality, a wide range of real-world problems
are described by integer optimization problems.
Their size and population are always increasing.
Even though exact algorithms for integer
problems have improved significantly in recent
years, their excessive runtimes and memory
requirements typically render them useless for
actual medium and large-scale problems.

Because achieving a decent viable answer in a
reasonable period is totally adequate for many
real issues, developing heuristic algorithms with
polynomial computing cost remains a current
topic. Because of their exponential computing
complexity, many large-scale real-world issues
cannot be handled by precise algorithms. In this
circumstance, the only option is to employ
approximation polynomial time methods.

Several advances in AI algorithms and methods
have helped integer programming. Some of the
possible future directions for developing these
advances may be understood via a framework
that connects the viewpoints of AI and
computational modeling.

COMPETING INTERESTS

Author has declared that they have no known
competing financial interests or non-financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper.

REFERENCES

1. Xiao H, Muthu B, Kadry SN. Artificial
intelligence with robotics for advanced
manufacturing industry using robot-
assisted mixed-integer programming
model. Intell Serv Robot. 2020;1-10.
DOI: 10.1007/s11370-020-00326-7

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

9

2. Liang H, Tsuei M, Abbott N, You F. AI
framework with computational box
counting and Integer programming
removes quantization error in fractal
dimension analysis of optical images.
Chem Eng J. 2022;446:137058.
DOI: 10.1016/j.cej.2022.137058

3. Kleinert T, Labbé M, Ljubić I, Schmidt M. A
survey on mixed-integer programming
techniques in bilevel optimization. EURO J
Comp Optim. 2021;9:100007.
DOI: 10.1016/j.ejco.2021.100007

4. Valicka CG, Garcia D, Staid A, Watson J-
P, Hackebeil G, Rathinam S, et al. Mixed-
integer programming models for optimal
constellation scheduling given cloud cover
uncertainty. Eur J Oper Res. 2019;
275(2):431-45.
DOI: 10.1016/j.ejor.2018.11.043

5. Radoglou-Grammatikis P, Sarigiannidis P,
Lagkas T, Moscholios I. A compilation of
UAV applications for precision agriculture.
Comput Netw. 2020;172:107148.
DOI: 10.1016/j.comnet.2020.107148

6. Wang D, Tan D, Liu L. Particle swarm
optimization algorithm: an overview. Soft
Comput. 2018;22(2):387-408.
DOI: 10.1007/s00500-016-2474-6

7. Luo X, Yuan Y, Chen S, Zeng N, Wang Z.
Position-transitional particle swarm
optimization-incorporated latent factor
analysis. IEEE Trans Knowl Data Eng.
2020;34(8):3958-70.
DOI: 10.1109/TKDE.2020.3033324

8. Bengio Y, Lodi A, Prouvost A. Machine
learning for combinatorial optimization: A
methodological tour d’horizon. Eur J Oper
Res. 2021;290(2):405-21.
DOI: 10.1016/j.ejor.2020.07.063

9. Li Z, Chen Q, Koltun V. Combinatorial
optimization with graph convolutional
networks and guided tree search. Adv
Neural Inf Process Syst. 2018;31.

10. Liang Y, Cheng G. Topology optimization
via sequential integer programming and
canonical relaxation algorithm. Comput
Methods Appl Mech Eng. 2019;348:
64-96.
DOI: 10.1016/j.cma.2018.10.050

11. Hubara I, Nahshan Y, Hanani Y, Banner R,
Soudry D. ’Improving post training neural
quantization: Layer-wise calibration and
integer programming,’ arXiv preprint
arXiv:2006.10518; 2020.

12. Rajeswaran A, Finn C, Kakade SM, Levine
S. Meta-learning with implicit gradients.
Adv Neural Inf Process Syst. 2019;32.

13. Huisman M, Van Rijn JN, Plaat A. A
survey of deep meta-learning. Artif Intell
Rev. 2021;54(6):4483-541.

DOI: 10.1007/s10462-021-10004-4

14. Barman S, Krishnamurthy SK.
Approximation algorithms for maximin fair
division. ACM Trans Econ Comput. 2020;
8(1):1-28.

DOI: 10.1145/3381525

15. He Y, Chen Y, Lu J, Chen C, Wu G.
Scheduling multiple agile earth observation
satellites with an edge computing
framework and a constructive heuristic
algorithm. J Syst Archit. 2019;95:55-66.

DOI: 10.1016/j.sysarc.2019.03.005

16. Mele UJ, Gambardella LM, Montemanni R.
A new constructive heuristic driven by
machine learning for the traveling
salesman problem. Algorithms. 2021;
14(9):267.

DOI: 10.3390/a14090267

17. Hosseini Shirvani MH. A hybrid meta-
heuristic algorithm for scientific workflow
scheduling in heterogeneous distributed
computing systems. Eng Appl Artif Intell.
2020;90:103501.

DOI: 10.1016/j.engappai.2020.103501

18. Wang H, Alidaee B. Effective heuristic for
large-scale unrelated parallel machines
scheduling problems. Omega. 2019;
83:261-74.

DOI: 10.1016/j.omega.2018.07.005

19. Wu G, Mallipeddi R, Suganthan PN.
Ensemble strategies for population-based
optimization algorithms–A survey. Swarm
Evol Comput. 2019;44:695-711.

DOI: 10.1016/j.swevo.2018.08.015

20. Katoch S, Chauhan SS, Kumar V. A
review on genetic algorithm: past, present,
and future. Multimedia Tool Appl. 2021;
80(5):8091-126.

DOI: 10.1007/s11042-020-10139-6, PMID
33162782.

21. Ben-Ammar O, Castagliola P, Dolgui A,
Hnaien F. A hybrid genetic algorithm for a
multilevel assembly replenishment
planning problem with stochastic lead
times. Comput Ind Eng. 2020;149:
106794.

DOI: 10.1016/j.cie.2020.106794

22. Piotrowski AP, Napiorkowski JJ,
Piotrowska AE. Population size in particle
swarm optimization. Swarm Evol Comput.
2020;58:100718.

DOI: 10.1016/j.swevo.2020.100718

Romaniuk et al.; Asian J. Res. Com. Sci., vol. 15, no. 2, pp. 1-10, 2023; Article no.AJRCOS.97011

10

23. Ren Y, Lu Z, Liu X. A branch-and-
bound embedded genetic algorithm
for resource-constrained project
scheduling problem with resource

transfer time of aircraft moving
assembly line. Optim Lett. 2020;14(8):
2161-95.

DOI: 10.1007/s11590-020-01542-x

© 2023 Romaniuk et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/97011

http://creativecommons.org/licenses/by/4.0

