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ABSTRACT 
 
Introduction: Electrocardiogram (ECG) provides a wealth of information and remains an essential 
part of the assessment of cardiac patients. However, noise distortions associated with the signal 
could lead to wrong interpretation and diagnosis.  
Aim: To carry out an extensive comparative analysis of Savitzky-Golay (S-G) and Butterworth filters 
for ECG de-noising using Daubechies wavelets in a MATLAB version 2015a.  
Methodology: Noisy ECG signals downloaded from physionet.org under MIT-BIH arrhythmia 
database were de-noised using S-G and Butterworth filters displayed in both time and frequency 
domains. A quantitative evaluation was done to assess the performance of the filters for Signal to 
Noise Ratio (SNR), Mean Square Error (MSE) and Signal to Interference Ratio (SIR). The results of 
SNR for this work are compared with the results of other researches with other methods. 
Results: Experimental result for de-noising with Butterworth filter shows abnormal spiky waves in 
time domain quite unusual in morphology of the original waves and in the frequency domain creates 
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image signals which are indications of noise and baseline drift. While S-G filter maintains the signal 
power constant and only tries to decrease the noise power with peak preservation. Performance 
analysis for SNR, MSE and SIR using Butterworth filter gives mean values of 1.63 dB, 0.2036 and 
0.259 dB, while that of S-G filter gives 32.78 dB, 0.0001 and 1852.358 dB respectively.  
Discussion: Significant reduction of noise by S-G filter and retaining the ECG signal morphology 
effectively as compared to Butterworth filter is an evident that S-G filter delivers better performance 
results as compared to Butterworth filter in terms of noise separation, artifacts and baseline drifts. 
Conclusion: The importance of ECG de-noising filters and the criteria for their selection must be 
clearly understood by hospital managements and cardiac health centers for good quality ECG in 
diagnosis and therapy for cardiac diseases. 

 
 
Keywords: Electrocardiogram (ECG); Savitzky-Golay filter; Daubechies wavelets; butterworth filter; 

de-noising technique; signals. 
 

1. INTRODUCTION 
 
Electrocardiogram is the electrical activity of the 
heart which is a graphical demonstration of the 
variation of bio potential versus time [1]. It can 
also be defined as a bio electric signal which is 
used to take into account the electrical activities 
of the heart [2]. It is a non-invasive test used in 
determining the regular rhythmic activities of the 
heart condition [3,4,5]. According to Ravandale 
and Jain [4], and American Heart Association [6] 
this test is done over time to help in the study 
and understanding of cardiac disease. As such 
doctors and patients can effectively and 
continuously monitor the patient’s heart activities 
[7]. Shanmugasundaram et al. [8] and Walraven 
[9] had pointed out that ECG signal carries 
information about the structure and function of 
the heart which normally has a dynamic range of 
0.05–100 Hz and 1–10 mV. According to Harjeet 
and Rajini [10] and Libby et al. [11] some of the 
information includes heartbeats rhythm, heart 
position and conduction disturbances, diagnose 
damages done to the muscle cells (of the heart), 
Relative chamber size, effects of drugs on heart 
condition, change in electrolyte concentration 
etc. 
 

ECG signals can easily be recorded using non-
invasive electrodes on the limbs or chest or on a 
patient’s torso [7,12,10,13]. These electrodes are 
biological transducers consisting of metals and 
salts [14]. A good quality ECG is used by 
clinicians to enable them interpret and identify 
pathological and physiological phenomena which 
is commonly used to checkmate causes of chest 
pain and abnormal heart rhythm. Little electrical 
transforms on the skin that arises because of 
those heart muscle movements is being detected 
by electrodes then displayed on the screen as a 
1D biological signal. Fisch [15] had argued that 
ECG can be the first or only indication of a 

possible cardiac disease. However, in recording 
of ECG signals, noise interference also known as 
artifacts always accompanies the signal and can 
only be minimized to a barest and interpretable 
minimum [8]. This noise comes in low frequency, 
high frequency or physiological interferences due 
to different factors including Baseline Wandering, 
Power Line Interference (PLI), Motion Artifact, 
Electrode Contact Noise or Muscle Contraction 
[16].  
 
Baseline wander noise (drift) is caused by 
respiration, patient movement, dirty lead wires or 
electrodes, loose electrodes etc. [7,17]. It is 
usually within the range of 0.15 Hz – 0.3 Hz [4]. 
According to Kasar and Josh [18], because of the 
baseline wander, peak-T is higher than peak-R 
and in most times mistaken for peak-R and has a 
15% amplitude variation of peak-to-peak. Power 
Line Interference is majorly caused by poor 
grounding of the ECG machine, which can create 
difficulty in reading and interpreting waveforms of 
low amplitude. According to Garg et al. [19] PLI 
constitute most part of the distortion at 50-60Hz, 
and its amplitude is 50% of peak-to-peak ECG 
amplitude. Motion Artifacts are transient baseline 
changes usually caused by impedance mismatch 
between electrode and the skin due to patient 
movement while ECG is being recorded [20,21]. 
Electrode Contact Noise occurs due to improper 
contact between the electrode and skin of the 
patient. It has a short duration of 1 sec. [18]. 
Muscle Contraction or Electromyography (EMG) 
noise is caused by the movement of the patient 
and is responsible for the generated potentials 
(in milli-volt level) [20]. 
 
To avoid misinformation about the disease, the 
removal of artifacts/Noise in ECG signal is an 
important pre-processing action to abnormality 
detection from the waveforms. El-Dahshan [22] 
proposed an effective hybrid scheme for the 
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denoising of ECG signals corrupted by 
nonstationary noises using the GA and DWT. 
Rastogi and Mehra [16] proposed the analysis 
Butterworth and Chebyshev filters for ECG de-
noising utilizing wavelets. Joshi et al. [21] 
proposed the ECG signal de-noising techniques 
using various approach based on wavelet 
transformation, fuzzy logic, FIR filtering, and 
empirical mode decomposition (EMD). Rastogi 
and Mehra [23] analyze the Savitzky-Golay filter 
for baseline Wander suppression in ECG using 
wavelets. Sadhukhan and Mitra [24] proposed an 
ECG noise reduction technique by suppressing 
the Fourier coefficient corresponding to the noise 
band. Hitrangi Sawant and Harishchandra [25] 
proposed the ECG signal denoising using 
discrete wavelet transform. Balan et al. [26] 
proposed the underwater noise reduction method 
using wavelet and Savitzky-Golay. Sharma and 
Narwaria [27] proposed the window based FIR 
filter to assess the effectiveness of various 
window techniques for noise suppression in ECG 
signal. Xin et al. [17] proposed the ECG baseline 
wander removal based on mean-median filter 
and empirical mode decomposition. 
Krishnamurthy et al. [28] compared various 
filtering techniques (digital filters) for removing 
high frequency noise in ECG signal. Sharma and 
Suji [13] analyzed various window techniques for 
de-noising each ECG signal based on FIR filters. 
Harjeet and Rajini [10] performed ECG signal de-
noising using Savitzky-Golay filter and Discrete 
Wavelet Transform (DWT). Alyasseri et al. [29] 
performed denoising by using β-hill climbing 
algorithm with wavelet transform. Md Yusof and 
Ariffin [30] proposed the Steins Unbiased Risk 
Estimate (SURE) method to optimize the level of 
decomposition in stationary wavelet transform 
de-noising. Ahmad et al. [31] proposed the 
Genetic Algorithm (GA) with wavelet transform 
(WT) for de-noising of arrhythmia ECG signals. 
Wedeld [32] proposed the normalized least mean 
square filter to carry out preliminary processing 
of ECG signals for use in multivariate analysis. 
Wedeld estimated and extracted the baseline 
wandering and shift from the signal by using 
Savitzky-Golay filter, discrete wavelet transforms 
and an empirical mode decomposition and also 
implemented algorithm for detecting QRS 
complexes and estimating heart rate. 
 

The use of filters in ECG de-noising has proven 
to be one of the most effective ways to obtain a 
good and quality signal. In this study a 
comparative analysis of Butterworth and 
Savitzky-Golay (S-G) filters for ECG signal de-
noising using Daubechies wavelets was carried 

out with the help of MATLAB version 2015a. The 
research is timely in this period of COVID-19 
Pandemic as it will serve as a guide for hospital 
managements and cardiac health centers in 
understanding the parameters for the selection of 
appropriate de-noising filters for an improve and 
effective ECG signal for medical diagnosis and 
treatment of cardiac related diseases. 

 
2. LITERATURE REVIEW  
 
2.1 Savitzky-Golay (S-G) Filters 
 
In 1964, Savitzky and Golay proposed a way of 
retaining the original signal shape, and thus, its 
information while still using the principles of 
moving average filters [33]. Moving average filter 
is one of the simplest and most straightforward 
ways of filtering a noisy signal [32]. The 
generalized formulae of the repeated process of 
averaging in order to filter this signals is as 
shown in Eqn. 1. 
 
g� =  ∑ C�X�

���
�����                                    (1) 

 
where; 

 

 C� =Filters coefficient with constant value 
�

�
 

 X� =A random point of a discrete data set  
 m =Static number 

 
In order to do so, they sought to replace ��  in 
Eqn. 1 with polynomials of higher order. To do 
this, they proposed an approximation of local 
least-square polynomial [34] fitting the 
polynomial line to the ′�′  points within the 
window. The criteria used in choosing the filtered 
value �� is by considering the value which best 
retain the fundamental shape of the data; the 
coefficient of each polynomial must be 
determined so that the equivalent polynomial 
curve best matches the data provided [35].  

 
Mathematically, the idea is to find the best mean-
square fit of a polynomial of say, degree � via a 
set of 2� + 1  consecutive values, where 
� < 2� + 1. This according to [32] is of the form: 

 
g� = ∑ b��k

����
��� = b�� + b��k + b��k� + ⋯ + b��k

�          (2) 

 
Taking the first and second order derivatives of 
Eqn. 2 we have: 

 
���

��
=  b�� + 2b��k + 3b��k� + ⋯ + pb��k���    (3) 
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���

��� = 2b�� + 6b��k + ⋯ + (p − 1)pb��k���     (4) 

 

Generally written; 
 

��
�

�

��� = p�
��

                                                      (5) 

 

By the least squares criteria, it is required to 
minimize the sum of the squares of the difference 
the observed values y� and estimate values 
inside the window, thus; 
 

�

����
[∑ (g� − y�)�]���

���� = 0                              (6) 

 

Expressing Eqn. 6 with respect to b�� gives: 
 

�

����
[∑ �b�� + b��k + ⋯ + b��k� − y��

����
���� ] 

 

=2 ∑ �b�� + b��k + ⋯ + bppk� − y��k���
���� = 0  

                                                (7) 
 
Conclusively, S-G filter has an important peak 
preserving property which is very useful in ECG 
signal analysis [36]. 
 

2.2 Butterworth Filter 
 
Butterworth filter is a form of high order filter, 
designed to have a very flat response (i.e. no 
ripples) in the pass band [37,16] and steep slope 
immediately after cut-off. In order to achieve this, 
Butterworth [38] proposed a filter design with a 
possible gain or frequency response which is 
defined as follows: 
 

G(ω) =
�

�����(
�

��
)��

                                            (8) 

 

Where; 
 

ω = Angular frequency (rad��) 
n = Number of poles in the filter, which is same 
as the amount of reactive elements of a passive 
filter. 
ε =Maximumpass band gain 
ω� = Cut-off frequency 
G = Transfer function 
With, ε = 1 and in a more linear form, Eqn.1 can 
be re-written as; 
 
����

���
=

�

���(
�

��
)��

                                                   (9) 

 

Where; 

 
f = Frequency at which calculation is made 

f� = The cut-off frequency usually half power or -
3dB 
 
Butterworth [38] created a higher order filters 
from a bipolar filters which are kept separate 
from each other by a vacuum tube amplifier.  
 

2.3 Methods of ECG Analysis 
 
Various methods have been developed for ECG 
analysis including Fast Fourier transform, Short 
time Fourier transform, and wavelet transform. 

 
2.3.1 Fast Fourier Transform (FFT) 
 
According to Rawal et al. [39] and Karpagachelvi 
et al. [40] the time domain method has been 
used in early times for ECG signal analysis, but it 
was not sufficient to study all characteristics of 
ECG signal. Fast Fourier Transform (FFT) 
method transforms time domain signal to 
frequency domain to obtain the frequency 
coefficients [41]. According to Singh et al. [42], it 
is an elementary transform in digital signal 
processing with various applications in frequency 
analysis, signal processing etc. The FFT can be 
defined as follows: 

 

XK = ∑ xe�
�����

����
���         (10) 

 
Where k is an integer ranging from 0 to N-1 

 
According to Tasa et al. [43] FFT is one of the 
varieties of techniques used to compress ECG 
signals using the following steps: 

 
● Obtaining an ECG sample or input signal.  
● Compressing the input signal by removing 

the low frequency components.  
● Recovery of the original signal by using 

inverse FFT. 
 
However, according to Gautam and Kaur [1] FFT 
has a disadvantage that it failed to provide the 
information regarding the accurate location of 
frequency components in time. 

 
2.3.2 Short Time Fourier Transform (STFT)  

 
Short-Time Fourier Transform (STFT) also called 
Gabor transform is an attempt to overcome the 
shortcoming of FFT since it has both time and 
frequency information [41,44]. The STFT 
determines the sinusoidal frequency and phase 
content of the signal as it varies with time using a 
simple and fast technique called spectrogram, 



 
 
 
 

Yusuf et al.; AJRCD, 2(1): 15-29, 2020; Article no.AJRCD.57328 
 
 

 
19 

 

i.e. by slicing the waveform of interest into a 
number of short data segments using a window 
function, then analyzes each segment using 
standard Fourier transform [45]. For a signal x (t), 
the STFT can be defined as follows:  
 

X(τ, f) = ∫ x(t)w�t − τe�������dt
�

�

�
�

�

                    (11)  

 

Where w (t) is a window, having duration T, 
centered at time location t, then the Fourier 
transform of the windowed signal x (t) w (t - τ) is 
the STFT. 
 

According to Rajini and Kaur [45] STFT has a 
limitation in that its time frequency precision is 
not optimal as window should always have a 
fixed size and thus it does not give multi 
resolution information of the signal. 
 

2.3.3 Wavelet transform  
 

A Wavelet as defined by Alfouri and Daqrouq 
[46] is a small wave which has energy 
concentrated in time and provides a tool for the 
analysis of transient, non-stationary or time-
varying signals. According to Karthikeyan et al. 
[47] the Wavelet Transform has the multi 
resolution property which gives both time and 
frequency information through variable window 
size. Rajini and Kaur [45] added that it is used in 
signal compression as well as a new tool for 
seismic signal analysis. Various Wavelets are 
available for large variety of applications 
including Biorthogonal, Haar, Coiflet, Symlet, 
Daubechies Wavelets, etc. However, in this 
study, the Daubechies Wavelets was chosen 
specifically the db4 because of its close similarity 
to ECG in terms of tracings and its property of 
maximum number of vanishing moments [23]. 
Some features which make the Wavelets useful 
have been itemized by Nagendra et al. [48] as 
follows:  
 
● Wavelets are localized in both time and 

frequency.  
● For analyzing non-stationary signals such 

as ECG which have frequent level variations 
and uneven features.  

● Wavelet separates a signal into multi-
resolution components.  

 
The Wavelet Transform is a linear process that 
decomposes the signal into a number of scales 
associated with frequency components and 
analyzes each scale with a certain resolution 
[49]. Unlike the Fourier analysis which is 
restricted to one feature morphology (i.e. 

sinusoid), Addison [50] argued that in the 
Wavelet technique various Wavelet functions are 
available, that allows selecting the best function 
for analyzing the signal. The Wavelet transforms 
can be classified into two categories: Continuous 
Wavelet Transforms (CWT) and Discrete 
Wavelet Transforms (DWT).  
 
Continuous Wavelet Transform: The 
Continuous Wavelet Transform (CWT) is a time–
frequency analysis method which differs from the 
traditional STFT. It is a technique that allows high 
localization in time of high frequency signal 
features by having a variable window width, 
which is associated to the scale of observation 
for the isolation of the high frequency features 
[45]. It differs from the STFT in that it is not 
restricted to use of sinusoidal analyzing 
functions, rather, localized waveforms can be 
selected as long as they satisfy the predefined 
mathematical criteria [50]. The CWT of a signal x 
(t) is defined by Nagendra et al. [48] can be given 
as: 
 

w(a, b) =
�

√�
∫ f(t)h ∗ �

(���)

�
� dt

�

��
         (12)  

 
Where, h (t) is called mother wavelet, and is the 
scaling parameter in y-axis and b is the shift 
parameter in x-axis.  
 
Discrete Wavelet Transform: The Discrete 
Wavelet Transform (DWT) as defined by Gautam 
and Kaur [1] can be given as:  
 

w(j, k) = ∑ ∑ x(k)e�
�

�φ(2��n − k)��         (13) 

 
where Ψ (t) is a time function with finite energy 
and fast decay called the mother wavelet. 
 

3. MATERIALS AND METHODS 
 

3.1 Materials 
 

The materials and their specifications used for 
the purpose of this research includes windows 10 
laptop with 1.6Hz processor, 3.85 usable Ram, 
and 64-bit operating system, MATLAB version 
2015a, and noisy ECG signal obtained from 
physionet.org under MIT-BIH arrhythmia 
database. 
 

3.2 Methods 
 
3.2.1 Signal de-noising method 
 

The method involved in this research was carried 
out according to the following steps:  
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i. Download the noisy signal from 
physionet.org which is in time domain. 

ii. Convert to wavelet (Frequency) domain 
using MATLAB soft-ware. 

iii. De-noise the signal with the Butterworth 
filter using Daubechies wavelets. 

iv. De-noise the signal with the Savitzky-Golay 
filter using Daubechies wavelets. 

v. Convert the de-noised signals back to time 
domain  

 
3.2.2 Performance analysis method 
 
To check the performance of the filter various 
analysis were carried out which includes the 
calculation of Signal to Noise Ratio (SNR), Mean 
Square Error (MSE) and Signal to Interference 
Ratio (SIR). 
 
3.2.2.1 Signal to noise ratio (SNR) 
 
The signal to noise ratio (SNR) compares the 
level of desired signal to the level of background 
noise. Sources of noise can include microwave 
ovens, cordless phone, Bluetooth devices, 
wireless video cameras, wireless game 
controller, fluorescent lights, and more [51]. The 
noise does not include co-channel interference 
from other radio transmitters. According to Net 
Spot [51], a ratio of 10-15dB is the accepted 
minimum to establish an unreliable connection, 
16-24dB is usually considered poor; 25-40dB is 
good and a ratio of 41dB or higher is considered 
excellent. The SNR value can be calculated 
using the following equations: 
 

SNR�� = 10(
�

�
)�                                            (14) 

 
Or, 
 

SNR�� = 20(
�

�
)�                                             (15) 

 
Where; 
 
S = RMS power of ECG signal 
N = RMS power of the de-noised ECG signal 

 
3.2.2.2 Mean square error (MSE) 

 
The mean square error (MSE) measures the 
average of the squares of the errors, that is, the 
average square difference between the 
estimated value and the actual value. It 
measures how close fitted line is to data point 
and provides us with confidence that our 
assumptions about trends in the data are correct. 

The smaller the MSE value the better the fit, as 
smaller values imply smaller magnitudes of error 
[52]. The MSE value was calculated using the 
following equation: 
 

MSE =
∑(����)�

�
                                                 (16) 

 
Where; 
 
s = Noisy signal 
s� = De-noised signal 
N = Number of samples     
 
3.2.2.3 Signal to interference ratio (SIR) 
 
The signal to interference ratio (SIR) is similar to 
SNR but here the interference is specific to co-
channel interference from other radio 
transmitters. According to Nnebe et al. [53] the 
higher the SIR the minimal the interference and 
the SIR must reach a minimum threshold for the 
signals to be detected. Suksompong [54] 
explained that SIR should be greater than a 
specified threshold for proper signal operation. In 
the 1G AMPS system, designed for voice calls, 
the threshold for acceptable voice quality is SIR 
equal to 18dB, for the 2G digital AMPS system 
(D-AMPS or IS-54/136), a threshold of 14 dB is 
deemed suitable, and for the GSM system, a 
range of 7–12 dB, depending on the study done, 
is suggested as the appropriate threshold, While, 
the probability of error in a digital system 
depends on the choice of this threshold as well. 
Wireless devices works reliably with SIR value of 
0dBm or less [55]. The SIR value was calculated 
using the following equation: 
 

SIR = ∑ [
��(�����������)

��(�����)
]�

���                                 (17) 

 
Where, 
 
 y�(�����������) = Amplitude of input (Noisy signal) 

 y�(�����) =  Amplitude of noise removed through 

filtering. 
 

4. RESULTS 
 
4.1 ECG De-Noising Simulation Results 
 
The simulation results for the ECG de-noising of 
different signals (104, 108, 109, 113, 117, 119, 
209, 222, 230 and 232) have been carried out 
using Butterworth filter and Savitzky-Golay filter. 
The process uses equations 1 to 13 to carry out 
the simulation and the results are obtained in 



 

Fig. 1. 

 

Fig. 2. De-noised signal 108 using Butterworth filter in time domain

 
Fig. 3. De-noised signal 108 using S

both time and frequency domain representation. 
However, since the researcher cannot present all 
the simulated results, for the purpose of 
comparison, the results of signal (108) de
using Butterworth and Savitzky-Golay filters was 
randomly selected and presented in its time and 
frequency domains as shown in Figs. 1 to 6.
 
Fig. 1 shows the noisy signal 108 represented in 
its time domain, Fig. 2 is a representation of de
noised signal 108 using the Butterworth filter in 
its time domain, while Fig. 3 is a representation 
of de-noised signal 108 using the S
time domain. Comparing Figs. 2 and 3 to Fig. 1 
we see that the de-noised signal using 
Butterworth filter in Fig. 2 is sharp and clear but 
its original shape is not preserved, showing 
abnormally spiky waves which is quite unusual in 
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. 1. Noisy signal 108 in time domain 
 

 

noised signal 108 using Butterworth filter in time domain 
 

 

noised signal 108 using S-G filter in time domain 
 

time and frequency domain representation. 
However, since the researcher cannot present all 
the simulated results, for the purpose of 
comparison, the results of signal (108) de-noised 

Golay filters was 
resented in its time and 

frequency domains as shown in Figs. 1 to 6. 

Fig. 1 shows the noisy signal 108 represented in 
its time domain, Fig. 2 is a representation of de-
noised signal 108 using the Butterworth filter in 
its time domain, while Fig. 3 is a representation 

noised signal 108 using the S-G filter in its 
domain. Comparing Figs. 2 and 3 to Fig. 1 

noised signal using 
Butterworth filter in Fig. 2 is sharp and clear but 
its original shape is not preserved, showing 
abnormally spiky waves which is quite unusual in 

morphology of the original waves. However, the 
de-noised signal using S-G filter in Figs. 3 
maintains the original shape and morphology of 
the original signal after de-noising, showing that 
only the noise component was removed.
 
Fig. 4 is the noisy signal 108 represented in its 
frequency domain, Fig. 5 is a representation of 
de-noised signal 108 using the Butterworth filter 
in its frequency domain, while Fig. 6 is a 
representation of de-noised signal 108 using the 
S-G filter in its frequency domain. Comparing 
Figs. 5 and 6 to Fig. 4 we observe that the de
noised signal using Butterworth filter in Fig. 5 is 
sharp and clear, but produces an image signal 
along the negative axis. This is an indication of 
baseline drift a porous nature that may not be 
good for an ECG signal interpretation. H
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ves. However, the 
G filter in Figs. 3 

maintains the original shape and morphology of 
noising, showing that 

only the noise component was removed. 

Fig. 4 is the noisy signal 108 represented in its 
ncy domain, Fig. 5 is a representation of 

noised signal 108 using the Butterworth filter 
in its frequency domain, while Fig. 6 is a 

noised signal 108 using the 
G filter in its frequency domain. Comparing 

observe that the de-
noised signal using Butterworth filter in Fig. 5 is 
sharp and clear, but produces an image signal 
along the negative axis. This is an indication of 
baseline drift a porous nature that may not be 
good for an ECG signal interpretation. However, 



the de-noised signal using the S-G filter in Fig. 6 
is sharp, clear and maintains its original shape 
without baseline drift, though reduced in 
amplitude due to removal of the noise 
component of the signal, showing that the S
filter is a good de-noising filter. 
 

4.2 Performance Analysis  
 
The performance analysis for the ECG signal de
noising of the different sampled ECG signals 
(104, 108, 109, 113, 117, 119, 209, 222, 230 and 
232) using Butterworth filter and S
been carried out. The analysis for SNR, MSE, 

 
Fig. 4. Noisy signal 108 in frequency domain

 
Fig. 5. De-noised signal 108 using Butterworth filter in frequency domain

Fig. 6. De-noised signal 108 using S
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G filter in Fig. 6 
is sharp, clear and maintains its original shape 
without baseline drift, though reduced in 
amplitude due to removal of the noise 
component of the signal, showing that the S-G 

The performance analysis for the ECG signal de-
noising of the different sampled ECG signals 
(104, 108, 109, 113, 117, 119, 209, 222, 230 and 
232) using Butterworth filter and S-G filter has 

nalysis for SNR, MSE, 

and SIR were carried our using equations 14 to 
17 and are presented as shown in Table 1 to 3.
 
Table 1 presents the result of the performance 
analysis on SIR for the ten (10) sampled ECG 
signals de-noised using Butterworth and S
filters. From Table 1 it can be observed that the 
SNR for Butterworth filter varies from 0.20dB to 
4.17dB with a mean value of approximately 
1.63dB. While for the S-G filter it varies from 
22.17dB to 42.80dB with a mean value of 
approximately 32.78dB. The comparison of SNR 
for Butterworth and S-G filters for the de
ECG signals is as shown in Fig. 7. 
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Table 2 presents the result of the performance 
analysis on MSE for the ten (10) sampled ECG 
signals de-noised using Butterworth and S-G 
filters. From Table 2 it can be observed that the 
MSE for Butterworth filter varies from 0.0118 to 
0.78279 with a mean value of approximately 
0.2036. While for the S-G filter it varies from 
0.00003 to 0.00034 with a mean value of 
approximately 0.0001. The comparison of MSE 
for Butterworth and S-G filters for the de-noised 
ECG signals is as shown in Fig.8. 
 

Table 3 presents the result of the performance 
analysis on SIR for the ten (10) sampled ECG 
signals de-noised using Butterworth and S-G 
filters. From Table 3 it can be observed that the 
SIR for Butterworth filter varies from -3.738dB to 
1.887dB with a mean value of approximately 
0.259dB. While for the S-G filter it varies from -
299.202dB to 81559.417dB with a mean value of 
approximately 1852.358dB. The comparison of 
SIR for Butterworth and S-G filters for the de-
noised ECG signals is as shown in  Fig. 9. 

Table 1. SNR for de-noised ECG signal for Butterworth and S-G filters 
 

S/NO ECG SIGNAL SNR (dB) 
Butterworth S-G 

1 104 4.167281 23.506516 
2 108 2.772084 36.051186 
3 109 1.591261 35.516700 
4 113 0.201191 31.530670 
5 117 0.260447 42.452362 
6 119 0.860306 42.804288 
7 209 0.672459 22.170155 
8 222 0.860959 26.506191 
9 130 3.173209 35.120229 
10 232 1.772571 32.139129 
 Mean 1.633177 32.779743 

 

Table 2. MSE for de-noised ECG signal for Butterworth and S-G filters 
 

S/NO ECG signal MSE 
Butterworth S-G 

1 104 0.029363 0.000342 
2 108 0.135608 0.000064 
3 109 0.176809 0.000072 
4 113 0.076766 0.000057 
5 117 0.723611 0.000044 
6 119 0.782789 0.000050 
7 209 0.011753 0.000083 
8 222 0.031407 0.000086 
9 130 0.038855 0.000025 
10 232 0.028811 0.000026 
 Mean 0.203577 0.000085 

 
Table 3. SIR for de-noised ECG signal for Butterworth and S-G filters 

 
S/NO ECG signal SIR (dB) 

Butterworth S-G 
1 104 1.887332 -266.951652 
2 108 -3.738311 -222.594120 
3 109 -1.846677 3647.437893 
4 113 0.980739 609.196198 
5 117 0.707065 8159.417477 
6 119 1.162270 1092.976430 
7 209 1.107870 -299.202217 
8 222 0.866190 22.577369 
9 130 0.363691 217.857081 
10 232 1.100660 5562.861507 
 Mean 0.259083 1852.357597 
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Fig. 7. Comparison of SNR for Butterworth and S-G filters for ECG de-noising
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Fig. 10. Comparison of SNR output performance of this work with others 
 

The results of SNR for this work are compared 
with the results of other researches with other 
methods: Ahmed et al. [31] who proposed the 
Genetic Algorithm (GA) with wavelet transform 
(WT) for de-noising of arrhythmia ECG signals, 
El-Dahshan [22] who proposed an effective 
hybrid scheme for the denoising of ECG signals 
corrupted by nonstationary noises using the GA 
and DWT, Hitrangi Sawant and Harishchandra 
[25] who proposed the ECG signal denoising 
using discrete wavelet transform, Sadhukhan 
and Mitra [24] who proposed an ECG noise 
reduction technique by suppressing the Fourier 
coefficient corresponding to the noise band, 
Alyasseri et al. [29] who worked on ECG 
denoising by using β-hill climbing algorithm with 
wavelet transform, Sharma and Suji [13] 
analyzed various window techniques for de-
noising each ECG signal based on FIR filters, 
and Harjeet and Rajini [10] performed ECG 
signal de-noising using Savitzky-Golay filter and 
Discrete Wavelet Transform (DWT), as illustrated 
in the Fig. 10. 
 

5. DISCUSSION 
 
Comparing the simulation results of the 
Butterworth and S-G filters, it is observed that in 
the time domain the peak of the signal for the 
Butterworth filter is tempered with, showing 
abnormally spiky waves which is quite unusual in 
morphology of the original waves, this is an 
indication of noise. Even though Butterworth filter 
is a digital filter, it still falls under infinite impulse 
response (IIR) filter and so it is not linear. While 
the S-G filters tend to preserve the peak of the 
ECG signal and maintain the original morphology 

of the wave. This is because S-G filter is a finite 
impulse filter which worked by maintaining the 
signal power constant and only tries to decrease 
the noise power. This is in line with 
Krishnamurthy et al. [28]. Likewise in the 
frequency domain, Butterworth filter tends to 
create image signals in the negative axis which 
could also be a form of noise or baseline drift. 
While the S-G filter localizes the signal in the 
direction of the original signal after de-noising. 
This is a good indication that S-G filter performs 
better than Butterworth filter.  

 
Findings from the performance analysis have 
revealed that the average SNR value after de-
noising with Butterworth filter is approximately 
1.63dB as against 32.78 dB for S-G filter. Since 
according to Net Spot [51] a ratio of 20-24dB is 
considered to be good, it implies that S-G filter 
takes care of the background noise better than 
Butterworth filter. This finding is not in line with 
the works of Krishnamurthy et al. [28] that obtain 
27.32dB for Butterworth filter when he truncated 
IIR filters by multiplying them with a finite length 
window function to obtain finite impulse response 
filters whose frequency response is modified 
from that of the IIR filter and Harjeet and Rajini 
[10] that obtained an average value of 8.52dB 
using Discrete Wavelet Transform (DWT) even 
though they used S-G filter and carried out 
thresh-holding.  
 
From the analysis of MSE, findings have 
revealed an average value of approximately 
0.2036 for Butterworth filter as against 0.0001 for 
S-G filter which are both Ok. Since according to 
Bruner [52] smaller values imply smaller 
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magnitudes of error, it implies that both filters 
have close fitting of de-noised signal line to the 
data point. This is in line with the findings of 
Harjeet and Rajini [10] that obtained 0.1201 for 
S-G filter and 0.0135 using DWT. 
 

Finally, from the analysis of SIR, findings have 
revealed an average value of approximately 
0.259 dB for Butterworth filter as against 
1852.358 dB for S-G filter. According to Nnebe et 
al. [53] the higher the SIR the minimal the 
interference. Since the threshold value is 18dB, 
performance of S-G filter is regarding co-channel 
interference from other transmitters is better than 
that of Butterworth filter. This finding is similar to 
that of Rastogi and Mehra [16] that obtain an SIR 
value of 1.003 dB using the Butterworth filter.  
 

From Tables 1 to 3 and Figs. 7 to 9, it is evident 
that S-G filter shows significant performance in 
terms of SNR, MSE and SIR considering all 
segments of ECG records than Butterworth filter, 
even though Butterworth filter show a good fit of 
the de-noised signal to the useful signal but that 
of S-G filter is better fitted and therefore a better 
filter for ECG de-noising. 
 

6. CONCLUSION 
 

The use of filters for de-noising has proven to be 
one of the solutions for a good and effective ECG 
signals for effective diagnosis and patient 
therapy on cardiac diseases. However, 
Comparative analysis of Butterworth filter and S-
G filter for ECG signal de-noising using the 
Daubechies Wavelet is proposed. The main 
parameters concerned for the performance 
analysis of the filters are SNR, MSE, and SIR. 
Butterworth filter does not accurately provide 
useful information for the frequency morphology 
of the ECG signal; as such it is not robust to 
noisy signals and cannot be flexible in analysing 
the frequency varying structure of the ECG signal 
due to formation of image signals that could also 
be a form of noise and baseline drift. S-G filter 
shows good performance of de-noised ECG 
features in both time and frequency domains. 
The separation of noise, artifacts and baseline 
drift has proved robust. It is evident that S-G filter 
delivers better performance results as compared 
to Butterworth filter. Comparison of the result of 
the SNR of this work with other studies showed 
that the result of this work is better. Management 
of hospitals and cardiac health centres most 
understand the importance of ECG de-noising 
filters and the criteria for their selection for 
effective diagnosis and treatment of cardiac 
diseases. 
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