A Hybrid K-Means-GRA-SVR Model Based on Feature Selection for Day-Ahead Prediction of Photovoltaic Power Generation

Lin, Jiemin and Li, Haiming (2021) A Hybrid K-Means-GRA-SVR Model Based on Feature Selection for Day-Ahead Prediction of Photovoltaic Power Generation. Journal of Computer and Communications, 09 (11). pp. 91-111. ISSN 2327-5219

[thumbnail of jcc_2021111615111960.pdf] Text
jcc_2021111615111960.pdf - Published Version

Download (3MB)

Abstract

In order to ensure that the large-scale application of photovoltaic power generation does not affect the stability of the grid, accurate photovoltaic (PV) power generation forecast is essential. A short-term PV power generation forecast method using the combination of K-means++, grey relational analysis (GRA) and support vector regression (SVR) based on feature selection (Hybrid Kmeans-GRA-SVR, HKGSVR) was proposed. The historical power data were clustered through the multi-index K-means++ algorithm and divided into ideal and non-ideal weather. The GRA algorithm was used to match the similar day and the nearest neighbor similar day of the prediction day. And selected appropriate input features for different weather types to train the SVR model. Under ideal weather, the average values of MAE, RMSE and R2 were 0.8101, 0.9608 kW and 99.66%, respectively. And this method reduced the average training time by 77.27% compared with the standard SVR model. Under non-ideal weather conditions, the average values of MAE, RMSE and R2 were 1.8337, 2.1379 kW and 98.47%, respectively. And this method reduced the average training time of the standard SVR model by 98.07%. The experimental results show that the prediction accuracy of the proposed model is significantly improved compared to the other five models, which verify the effectiveness of the method.

Item Type: Article
Subjects: Open Article Repository > Computer Science
Depositing User: Unnamed user with email support@openarticledepository.com
Date Deposited: 09 May 2023 05:36
Last Modified: 08 Jun 2024 07:56
URI: http://journal.251news.co.in/id/eprint/1322

Actions (login required)

View Item
View Item