Nishimura, Akira and Mishima, Daiki and Kono, Nozomu and Toyoda, Kyohei and Kolhe, Mohan Lal (2022) Impact of Separator Thickness on Temperature Distribution in Single Polymer Electrolyte Fuel Cell Based on 1D Heat Transfer. Energy and Power Engineering, 14 (07). pp. 248-273. ISSN 1949-243X
epe_2022072614132519.pdf - Accepted Version
Download (6MB)
Abstract
It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C for application of mobility usage from 2020 to 2025. This study aims to clarify the effect of separator thickness on the distribution of the temperature of reaction surface (Treact) at the initial temperature of cell (Tini) with flow rate, relative humidity (RH) of supply gases as well as RH of air surrounding cell of PEFC. The distribution of Treact is estimated by means of the heat transfer model considering the H2O vapor transfer proposed by the authors. The relationship between the standard deviation of Treact-Tini and total voltage obtained in the experiment is also investigated. We can know the effect of the flow rate of supply gas as well as RH of air surrounding cell of PEFC on the distribution of Treact-Tini is not significant. It is observed the wider distribution of Treact-Tini provides the reduction in power generation performance irrespective of separator thickness. In the case of separator thickness of 1.0 mm, the standard deviation of Treact-Tini has smaller distribution range and the total voltage shows a larger variation compared to the other cases.
Item Type: | Article |
---|---|
Subjects: | Open Article Repository > Engineering |
Depositing User: | Unnamed user with email support@openarticledepository.com |
Date Deposited: | 13 May 2023 05:37 |
Last Modified: | 23 Oct 2024 04:04 |
URI: | http://journal.251news.co.in/id/eprint/1359 |